Soham Dutta · Résumé

Modular Wide-Bandgap String Inverters for Low-Cost Medium-Voltage **Transformerless PV Systems**

WASHINGTON POWER ELECTRONICS LAB, UNIVERSITY OF WASHINGTON, SEATTLE

- Aim: To develop a line-frequency transformer-less power conversion link between utility scale photovoltaic power plants and the medium voltage electric grid.
- Develop and test grid connected cascaded H-bridge converters with DAB-based dc link.
- Develop decentralized controllers for
 - Communication-free active and reactive power control of cascaded H-bridge modules,
 - Relaxed filtering via ripple minimization by decentralized PWM interleaving,
 - Dc-link voltage control of Quad Active Bridge (QAB) converter.
- Enhancing the low load power processing efficiency of QAB.

Virtual Oscillator Controller (VOC)-based Parallel Grid-connected Inverters

WASHINGTON POWER ELECTRONICS LAB, UNIVERSITY OF WASHINGTON, SEATTLE

- · Aim: To substitute droop control in parallel connected inverters with novel virtual oscillator control which proves to have faster dynamic response and easier implementation.
- · Proposed a novel virtual oscillator-based controller (VOC) for parallel connected inverter control and formulated detailed design method for VOC controlled inverters.
- Developed a pre-synchronization strategy for grid-forming VOC inverters and experimentally validated the performance of the VOC.

Seattle, Washington Sept. 2018 - PRESENT

Bengaluru, India Aug. 2015 - May. 2017

Kolkata, India Aug. 2011 - May. 2015

2021-present

2018-2021

connected Cascaded AC-DC Converters with Distributed Battery Storage WASHINGTON POWER ELECTRONICS LAB, UNIVERSITY OF WASHINGTON, SEATTLE

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING (POWER ELECTRONICS)

- Aim: To develop Cascaded H-Bridge and Dual Active Bridge-based medium voltage grid connected converters for Extreme Fast Charging of Electric Vehicles. The cascaded dc-ac modules are equipped with integrated battery storage and decentralized controllers.
- Development of low voltage scaled-down EV charger hardware prototype.
- · Development of decentralized controllers for -

Education

University of Washington, Seattle

Advisor - Dr. Brian Johnson GPA - 3.9/4.0

Indian Institute of Science, Bangalore

BACHELOR OF ENGINEERING IN ELECTRICAL ENGINEERING

Research Experience

P.H.D. IN ELECTRICAL ENGINEERING

Jadavpur University

• GPA - 8.4/10.0

Primary and secondary side dc-voltage control of Quad Active Bridge (QAB)-based multiport dc-dc converter.

- EV charging current control and SOC balancing of storage batteries.
- Communication-free active and reactive power control of cascaded H-bridge modules,

Extreme Fast Charging (XFC) of Electric Vehicles using Medium Voltage grid

□ (+1) 206-790-4330 | Sdutta@uw.edu

• Advisor - Dr. Kaushik Basu GPA - Course: 6.6/8, Dissertation Project Grade: 'S' (8/8)

EV charging current ripple minimization by harmonic cancellation via PWM phase shifting.

Publication-1, Publication-2, Publication-3,

Publication-4

2019-2020

Publication-5. Publication-6

| 🛿 scholar-sdutta

| 🛅 soham-dutta-uw

JANUARY 20, 2023

Development of a Real-time AC Transmission Line Emulator using Power **Electronic Converters.**

KAUSHIK BASU LAB, INDIAN INSTITUTE OF SCIENCE, BANGALORE

- Aim: To develop a power electronic converter-based hardware platform which emulates a long AC transmission line in real time.
- Developed numerical model of a long AC transmission line and solved the model on a Xilinx Zynq System-on-Chip (SoC)-based control platform in real-time.
- Developed a back-to-back connected 3-phase inverters plus an active front end rectifier based prototype emulator which takes command from the SoC-based controller and emulates a long transmission line in real-time when interfaced to the grid on both sides.

Hardware Design Experience _____

15-kW, 100 kHz, 3-phase T-type Inverter for Grid Integration of Renewables

WASHINGTON POWER ELECTRONICS LAB, UNIVERSITY OF WASHINGTON, SEATTLE

- Designed SiC gate driver PCB with isolated driver ISO5852S driving half-bridge SiC MOSFETs and dual-channel driver UCC21530 driving mid-leg SiC MOSFETs. Custom designed +18 V/-5 V gate driver isolated bias supply.
- Designed LCL filter for the 3-level grid tied inverter.

High Frequency Ripple Current & Ripple Voltage Sensor

WASHINGTON POWER ELECTRONICS LAB, UNIVERSITY OF WASHINGTON, SEATTLE

- Designed an isolated current sensor PCB equipped with ripple separation filter and used for sensing ripple currents of very small amplitude accurately upto 1 MHz.
- Designed a voltage sensor which can exclusively sense output voltage ripple of a converter.

A DSP and FPGA based Integrated Controller Platform for Power Converter **Control and Embedded Applications**

KAUSHIK BASU LAB, INDIAN INSTITUTE OF SCIENCE, BANGALORE

- Designed and developed a Microchip DSP (dsPIC33EP256MU814) launch-pad with basic programming, debugging and communication functionalities and also built an interface card around it.
- The interface card hosts a Xilinx Artix-7 FPGA based daughter card (Digilent Cmod A7) and facilitates parallel communication between the DSP and FPGA along with other sensing, PWM, protection features necessary for power electronic hardware control.

10-kW, Si-IGBT based Modular Converters

KAUSHIK BASU LAB, INDIAN INSTITUTE OF SCIENCE, BANGALORE

• Took a partial role in the design and development of a Si-IGBT based half-bridge modular converter of 10 KW power rating and 800 V DC input for laboratory research purposes.

Representative Publications

A Practical Digital Implementation of Completely Decentralized Ripple Minimization in	Journal
Parallel-Connected DC-DC Converters	50011101
Soham Dutta, Brian Johnson	2022
IEEE Transactions on Power Electronics	
Self-synchronizing Cascaded Inverters with Virtual Oscillator Control	Journal
Minghui Lu, Soham Dutta, Brian Johnson	2021
IEEE Transactions on Power Electronics	
Decentralized PWM Interleaving for Ripple Minimization in both Symmetric and Asymmetric Parallel-connected DC-DC Converters	Online (Covid-19)
	5005 2021
Soham Dutta, Minghui Lu, Brian Johnson	ECCE 2021
2021 IEEE Energy Conversion Congress and Exposition (ECCE)	
Grid-connected Self-synchronizing Cascaded H-Bridge Inverters with Autonomous Power	Online (Covid-19)
Sharing	Online (Covid-15)
Soham Dutta, Minghui Lu, Branko Majmunovic, Rahul Mallik, Gab-Su Seo, Dragan Maksimovic, Brian Johnson	ECCE 2021
2021 IEEE Energy Conversion Congress and Exposition (ECCE)	

Soham Dutta · Résumé

2

2016-2017

Publication-7, Publication-8,

Master's Thesis

2020

Hardware Imaae

Hardware Image

Hardware Image

2018

2016-2017

Design document, Hardware Image

A Novel Decentralized PWM Interleaving Technique for Ripple Minimization in Series-stacked DC-DC Converters Soham Dutta, Branko Majmunovic, Satyaki Mukherjee, Rahul Mallik, Gab-Su Seo, Dragan Maksimovic, Brian Johnson	Online (Covid-19) APEC 2021
 2021 IEEE Applied Power Electronics Conference and Exposition (APEC) Decentralized Control of Cascaded H-Bridge Inverters for Medium-Voltage Grid Integration 	Online (Covid-19)
Soham Dutta, Minghui Lu, Rahul Mallik, Branko Majmunovic, Satyaki Mukherjee, Gab-Su Seo, Dragan Maksimovic, Brian Johnson • 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL)	COMPEL 2020
Decentralized Carrier Interleaving in Cascaded Multilevel DC-AC Converters Soham Dutta, Rahul Mallik, Branko Majmunovic, Satyaki Mukherjee, Gab-Su Seo, Dragan Maksimovic, Brian Johnson • 2019 IEEE 20th Workshop on Control and Modeling for Power Electronics (COMPEL)	Toronto, Canada COMPEL 2019
Soft Switching Over the Entire Line Cycle for a Quadruple Active Bridge DCX in a DC to Three-Phase AC Module	Online (Covid-19)
Branko Мајмиnovic, Satyaki Mukherjee, Rahul Mallik, Soham Dutta, Gabsu Seo, Brian Johnson, Dragan Maksimovic • 2020 IEEE Applied Power Electronics Conference and Exposition (APEC)	APEC 2020
A Grid-compatible Virtual Oscillator Controller: Analysis and Design MINGHUI LU, SOHAM DUTTA, VICTOR PURBA, SAIRAJ DHOPLE, BRIAN JOHNSON • 2019 IEEE Energy Conversion Congress and Exposition (ECCE)	Baltimore, USA ECCE 2019
 A Pre-synchronization Strategy for Grid-forming Virtual Oscillator Controlled Inverters MINGHUI LU, SOHAM DUTTA, VICTOR PURBA, SAIRAJ DHOPLE, BRIAN JOHNSON 2020 IEEE Energy Conversion Congress and Exposition (ECCE) 	Online (Covid-19) ECCE 2020
Power Electronic Converter Based Flexible Transmission Line Emulation Soham Dutta, Sushmit Mazumdar, Kaushik Basu • IEEE Transactions on Industrial Electronics	Journal 2019
Real-time AC transmission line emulation with power electronic converters Soнам Dutta, Kaushik Basu • 2017 National Power Electronics Conference (NPEC)	Pune, India NPEC 2017

Awards & Achievements _____

2021	UW ECE Sarala Vadari Award, In recognition of the quality of research and contributions to the	
2021	power and energy group at UW Seattle.	
2015	All India Rank 57, In GATE-2015 (Competitive entrance examination for graduate program), out of	
	1,25,851 applicants in Electrical Engineering.	
2014	Finalist, Autonomous Image Processing robotics competition in Kshitij 2014, the Annual	IIT Kharagpur
	Techno-Management Fest of IIT Kharagpur.	
2011-13	Scholarship, Awarded scholarship under the Scheme of Scholarship for College and University	
	Students reg. of Govt. of India , 2011 for the excellent result in Higher Secondary Examination.	
2011	All state Rank 386, In WBJEE–2011 (Competitive entrance examination for Undergraduate	
	program) out of around 1,30,000 applicants for Engineering.	
2011	All state Rank 4, Awarded by the Chief Minister for securing a rank of 4 out of 637,808 students in	
	the Higher Secondary Examination of the state of West Bengal, India.	

Seasoned Subjects _____

Advanced Power Electronics, Switched Mode Power Conversion, Analog IC Design, Electronic Systems Packaging, Digital Controllers for Power Applications, Electric Drives, Topics in Power Electronics & Distributed Generation, Digital Control Systems Design, Mathematical Foundations for Systems Theory,

Programming/Technical Skills _____

Embedded hardware: TI- C2000 DSPs, Microchip- dsPIC33E, dsPIC30F, Xilinx- Zynq 7010 SoC, Spartan 3AN, PLECS RT Box, Software platforms: Matlab, Simulink, PLECS, Altium, Cadence Virtuoso, OrCAD, PSCAD, PSIM, Xilinx Vivado, Verilog, VHDL, SolidWorks, LaTex,

Positions Of Responsibility _____

2010 21	Reviewer, ECCE, APEC, PEDES, IEEE Transactions on Power Electronics (TPE), IEEE Transactions on	
2018-21	Energy Conversion (TEC), IEEE Journal of Emerging and Selected Topics in Power Electronics	
Fall, 2019	Teaching Assistant, EE452: Power Electronics Design	UW Seattle
2017-18	Project Associate, Power Electronics Group, EE Department, IISc Bangalore	IISc Bangalore
Jan-May, 2017	Teaching Assistant, E3 252: Digital Controllers for Power Applications	IISc Bangalore
Aug-Dec, 2016	Lab Assistant, E6 201: Power Electronics	IISc Bangalore
May-Oct, 2014	Student Placement Co-ordinator, Electrical Engineering Department, Jadavpur University	JU, Kolkata
Feb, 2014	Core Committee member , CONVOLUTION 2014 – the first ever Technical Fest of the Electrical Engineering Department of Jadavpur University.	JU, Kolkata