Brian Benjamin Johnson

Contact		<i>E-mail:</i> b.johnson@utexas.edu	Webpage: johnsonlab.ece.utexas.edu	
Expertise		Power Electronics, Power Systems, Control Systems, Renewable Energy, Energy Conversion		
Appointments		University of Texas at Austin , Department of Electrical Engineering, Austin, TX Assistant Professor, Fall 2022 – Present		
Education		University of Illinois at Urbana-Champaign , Urbana, Illinois Ph.D., Electrical and Computer Engineering, May 2013 M.S., Electrical and Computer Engineering, December 2009		
		Texas State University , San Marcos, Texas B.S., Physics, and B.M., Music, May 2008		
JOURNAL & MAGAZINE ARTICLES	[33]	O. Ajala, N. Baeckeland, B. Johnson, S. Dhop reduction and dynamic aggregation of grid-formit on Power Systems, 2022. (Accepted)	ble, and A. Domínguez-García, "Model ng inverter networks," in <i>IEEE Transactions</i>	
	[32]	R. Mallik, B. Majmunović, S. Dutta, G. Seo, D. Maksimović, and B. Johnson, "Control design of series-connected PV-powered grid-forming converters via singular perturbation in <i>IEEE Transactions on Power Electronics</i> , 2022.		
	[31]	S. Dutta and B. Johnson, "A practical digital impripple minimization in parallel-connected DC–D Power Electronics, vol. 37, no. 12, pp. 14422–1	plementation of completely decentralized C converters," in <i>IEEE Transactions on</i> 4433, Dec. 2022	
	[30]	B. Majmunović, S. Mukherjee, T. Martin, R. Ma D. Maksimović, "1 kV, 10-kW SiC-based quadu to three-phase AC module for medium-voltage g on Power Electronics, vol. 37, no. 12, pp. 1463	allik, S. Dutta, G. Seo, B. Johnson, and ruple active bridge DCX stage in a DC grid integration," in <i>IEEE Transactions</i> 1–14646, Dec. 2022	
	[29]	M. Lu, S. Dhople, D. Zimmanck and B. Joh in delta-connected single-phase droop-controlle <i>Power Electronics</i> , vol. 37, no. 12, pp. 14115-14	nsonn, "Spontaneous phase balancing d inverters," in <i>IEEE Transactions on</i> 4125, Dec. 2022.	
	[28]	Y. Lin, J. Eto, B. Johnson, J. Flicker, R. Lasser A. Ellis, J. Miller, and G. Yuan, "Pathways to inverter-based resources: Challenges and recon <i>Magazine</i> , vol. 10, no. 1, pp. 10-21, March 2022	ter, H. Villegas-Pico, G. Seo, B. Pierre, the next-generation power system with mmendations," in <i>IEEE Electrification</i> 2.	
	[27]	Y. Son, S. Mukherjee, R. Mallik, B. Majmunović and G. Seo, "Levelized cost of energy-oriented me for PV generation system using geometric progr 27561-27578, March 2022.	é, S. Dutta, B. Johnson, D. Maksimović, odular string inverter design optimization ramming," in <i>IEEE Access</i> , vol. 10, pp.	
	[26]	M. Lu, S. Dhople, and B. Johnson, "Benchmarki inverter control," in <i>IEEE Transactions on Po</i> 10250–10266, March 2022.	ng nonlinear oscillators for grid-forming ower Electronics, vol. 37, no. 37, pp.	
	[25]	M. Lu, S. Dutta, and B. Johnson, "Self-synchr oscillator control," in <i>IEEE Transactions on B</i> 6424–6436, June 2022 .	onizing cascaded inverters with virtual Power Electronics, vol. 37, no. 6, pp.	
	[24]	O. Ajala, M. Lu, B. Johnson, S. Dhople, A. Do inverters with current limiting and dispatchab <i>Transactions on Energy Conversion</i> , vol. 37, no	omínguez-García, "Model reduction for le virtual oscillator control," in <i>IEEE</i> o. 4, pp. 2250–2259, Dec. 2022.	

- [23] S. Jafarpour, V. Purba, B. Johnson, S. Dhople, and F. Bullo, "Singular perturbation and small-signal stability for inverter networks" in *IEEE Transactions on Control of Network Systems*, vol. 9, no. 2, pp. 979–992, June 2022.
- [22] H. Aaronson, B. Polagye, B. Johnson, R. Cavagnaro, "Design and implementation of a power smoothing system for cross-flow current turbines," in *SN Applied Sciences*, vol. 3, no. 4, March 2021.
- [21] J. Poon, B. Johnson, S. Dhople, and J. Rivas Davila, "Decentralized carrier phase shifting for optimal harmonic minimization in asymmetric parallel-connected inverters," in *IEEE Transactions on Power Electronics*, vol. 36, no. 5, pp. 5915–5925, May 2021.
- [20] J. Poon, B. Johnson, S. Dhople, and S. Sanders, "Minimum distortion point tracking," in *IEEE Transactions on Power Electronics*, vol. 35, no. 10, pp. 11013–11025, Oct. 2020.
- [19] V. Purba, B. Johnson, S. Jafarpour, F. Bullo, and S. Dhople, "Dynamic aggregation of grid-tied three-phase inverters," in *IEEE Transactions on Power Systems*, vol. 35, no. 2, pp. 1520-1530, March 2020.
- [18] H. Villegas Pico and B. Johnson, "Transient stability assessment of multi-machine multiconverter power systems," in *IEEE Transactions on Power Systems*, vol. 34, no. 5, pp. 3504–3514, Sept. 2019.
- [17] M. Lu, Y. Yang, B. Johnson, and F. Blaabjerg, "An interaction-admittance model for multi-inverter grid-connected systems" in *IEEE Transactions on Power Electronics*, vol. 34, no. 8, pp. 7542–7557, Aug. 2019.
- [16] V. Purba, B. Johnson, M. Rodriguez, S. Jafarpour, F. Bullo, and S. Dhople, "Reducedorder aggregate model for parallel-connected single-phase inverters," in *IEEE Transactions* on *Energy Conversion*, vol. 34, no. 2, pp. 824–837, June 2019.
- [15] M. Sinha, J. Poon, B. Johnson, M. Rodriguez, and S. Dhople, "Decentralized interleaving of parallel-connected buck converters," in *IEEE Transactions on Power Electronics*, vol. 34, no. 5, pp. 4493–5006, May 2019.
- [14] P. Achanta, B. Johnson, and D. Maksimović, "A multilevel DC to three-phase AC architecture for photovoltaic power plants," in *IEEE Transactions on Energy Conversion*, vol. 34, no. 1, pp. 181–190, March 2019.
- [13] J. Cale, B. Johnson, E. Dall'Anese, P. Young, G. Duggan, P. Bedge, D. Zimmerle, and L. Holton, "Mitigating communication delays in remotely connected hardware-in-theloop experiments," *IEEE Transactions on Industrial Electronics*, vol. 65, no. 12, pp. 9739–9748. Dec. 2018.
- [12] B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, B. Hodge, and B. Hannegan, "Achieving 100% renewable grids: Operating electric power systems with extremely high levels of variable renewable energy," *IEEE Power and Energy Magazine*, vol. 15, no. 2, pp. 61–73, March 2017.
- [11] M. Sinha, F. Dörfler, B. Johnson, and S. Dhople, "Uncovering droop control laws embedded within the nonlinear dynamics of Van der Pol oscillators," *IEEE Transactions* on Control of Network Systems, vol. 4, no. 2, pp. 347–358, June 2017.
- [10] B. Johnson and P. Krein, "An Analytical time-domain expression for the net ripple produced by parallel interleaved converters," *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 64, no. 3, pp. 289–293, March 2017.

- [9] B. Johnson, M. Sinha, N. Ainsworth, F. Dörfler, and S. Dhople, "Synthesizing virtual oscillators to control islanded inverters," *IEEE Transactions on Power Electronics*, vol. 31, no. 8, pp. 6002–6015, Aug. 2016.
- [8] E. Dall'Anese, S. Dhople, B. Johnson, and G. Giannakis, "Optimal dispatch of residential photovoltaic inverters under forecasting uncertainties," *IEEE Journal of Photovoltaics*, vol. 5, no. 1, pp. 350–359, Jan. 2015.
- [7] E. Dall'Anese, S. Dhople, B. Johnson, and G. Giannakis, "Decentralized optimal dispatch of photovoltaic inverters in residential distribution systems," *IEEE Transactions on Energy Conversion*, vol. 29, no. 4, pp. 957–967, Dec. 2014.
- [6] B. Johnson, S. Dhople, A. Hamadeh, and P. Krein, "Synchronization of parallel singlephase inverters using virtual oscillator control," *IEEE Transactions on Power Electronics*, vol. 29, no. 11, pp. 6124–6138, Nov. 2014.
- [5] S. Dhople, B. Johnson, F. Dörfler, and A. Hamadeh, "Synchronization of nonlinear circuits in generalized dynamic electrical networks," *IEEE Transactions on Circuits* and Systems I: Fundamental Theory and Applications, vol. 61, no. 9, pp. 2677–2690, Sept. 2014.
- [4] B. Johnson, S. Dhople, A. Hamadeh, and P. Krein, "Synchronization of nonlinear oscillators in an LTI electrical power network," *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, vol. 61, no. 3, pp. 834-844, Mar. 2014.
- [3] B. Johnson, S. Dhople, J. Cale, A. Hamadeh, and P. Krein, "Oscillator-based inverter control for islanded three-phase microgrids," *IEEE Journal of Photovoltaics*, vol. 4, no. 1, pp. 387–395, Jan. 2014.
- [2] P. Shenoy, K. Kim, B. Johnson, and P. Krein, "Differential power processing for increased energy production and reliability of photovoltaic systems," *IEEE Transactions on Power Electronics*, vol. 28, no. 6, pp. 2968–2979, June 2013.
- B. Johnson, A. Davoudi, P. Chapman, and P. Sauer, "A unified dynamic characterization framework for microgrid systems," *Electric Power Components and Systems*, vol. 40, no. 1, pp. 93–111, Nov. 2011.

CONFERENCE [53] R. Mallik, B. Majmunović, S. Dutta, G. Seo, D. Maksimović, and B. Johnson, "A PUBLICATIONS Lyapunov-based generalized DC-side controller design for PV-connected systems," in *Proc. Energy Conversion Congress and Exposition*, 2022, pp. 1-8.

- [52] B. Johnson, T.G. Roberts, O. Ajala, A. D. Dominguez-Garcia, S Dhople, D. Ramasubramanian, A. Tuohy, D. Divan, and B. Kroposki, "A generic primary-control model for gridforming inverters: Towards interoperable operation & control," in *Proc. of the Hawaii International Conference on System Sciences*, 2022, pp. 3398-3407.
- [51] M. Lu, V. Purba, S. Dhople, and B. Johnson, "Unified equivalent-circuit models for voltage-source inverters that capture averaged dynamics and power-flow solutions in distribution networks," in *Proc. Hawaii International Conference on System Sciences*, 2021, pp. 3243-3251.
- [50] S. Dutta, M. Lu, R. Mallik, B. Majmunović, S. Mukherjee, G. Seo, D. Maksimović, and B. Johnson, "Grid-connected self-synchronizing cascaded inverters with autonomous power sharing," in *Proc. Energy Conversion Congress and Exposition*, 2021.

- [49] S. Dutta, M. Lu, and B. Johnson, "Decentralized PWM interleaving for ripple minimization in both symmetric and asymmetric parallel-connected DC-DC converters," in *Proc. Energy Conversion Congress and Exposition*, 2021.
- [48] D. Venkatramanan, N. Vamanan, B. Johnson, and S. Dhople, "Quantitative analysis of third-harmonic neutral-point current, its impacts, and mitigation in three-level NPC inverters" in *Proc. Energy Conversion Congress and Exposition*, 2021.
- [47] M. Lu, R. Mallik, S. Dhople, and B. Johnson, "Dispatchable virtual oscillator controlled inverters with current-limiting and MPPT capabilities," in *Proc. Energy Conversion Congress and Exposition*, 2021.
- [46] S. Dutta, B. Majmunović, S. Mukherjee, R. Mallik, G. Seo, D. Maksimović, and B. Johnson, "A novel decentralized PWM interleaving technique for ripple minimization in series-stacked DC-DC converters," in *Proc. Applied Power Electronics Conference*, 2021.
- [45] S. Mukherjee, B. Majmunović, G. Seo, S. Dutta, R. Mallik, B. Johnson, and, D. Maksimović, "A high-frequency planar transformer with medium-voltage isolation," in *Proc. Applied Power Electronics Conference*, 2021.
- [44] D. Venkatramanan, B. Johnson, and S. Dhople, "Averaged dynamic model of three-level NPC grid-following inverter for examining neutral-point instability," in Proc. IEEE Workshop on Control and Modeling for Power Electronics, 2021.
- [43] R. Billmeyer, M. Lu, B. Johnson, and S. Dhople, "Modeling and simulation of powerelectronic inverters in analog electronic circuit simulators," in *Proc. International Symposium on Circuits and Systems*, 2021.
- [42] P. Chandran, B. Rose, B. Johnson, "Equivalent circuit models for closed-loop multiphysics drive systems," in Proc. Workshop on Control and Modeling of Power Electronics, 2020.
- [41] S. Dutta, M. Lu, R. Mallik, B. Majmunović, S. Mukherjee, G. Seo, D. Maksimović, and B. Johnson, "Decentralized control of cascaded H-bridge inverters for medium-voltage grid integration," in *Proc. Workshop on Control and Modeling of Power Electronics*, 2020.
- [40] M. Lu, V. Purba, S. Dhople, and B. Johnson, "Comparison of droop control and virtual oscillator control realized by Andronov-Hopf dynamics," in *Proc. Conference of the Industrial Electronics Society*, 2020.
- [39] B. Majmunović, S. Mukherjee, R. Mallik, S. Dutta, G. Seo, B. Johnson, and D. Maksimović, "Soft-switching over the entire line cycle in a quadruple active bridge-based DC to threephase AC module," in *Proc. Applied Power Electronics Conference*, 2020.
- [38] K. Goodrick, G. Seo, S. Maukherjee, J. Roy, R. Mallik, B. Majmunović, S. Dutta, D. Maksimović, and B. Johnson, "LCOE design optimization using genetic algorithm with improved component models for medium-voltage transformerless PV inverters," in *Proc. Energy Conversion Congress and Exposition*, 2020, pp. 2262-2267.
- [37] M. Lu, S. Dutta, V. Purba, S. Dhople, and B. Johnson, "A Pre-synchronization strategy for grid-forming virtual oscillator controlled inverters," in *Proc. Energy Conversion Congress and Exposition*, 2020, pp. 4308-4313.
- [36] R. Mallik, A. Pace, S. Burden, and B. Johnson, "Accurate small-signal discrete-time model of dual active bridge using saltation matrices," in *Proc. Energy Conversion Congress and Exposition*, 2020, pp. 6312-6317.

- [35] G. Seo, J. Roy, S. Mukherjee, R. Mallik, B. Majmunović, S. Dutta, D. Maksimović, and B. Johnson, "Levelized-cost-of-electricity-driven design optimization for mediumvoltage transformerless PV converters" in *Proc. Energy Conversion Conference and Exposition*, 2019, pp. 6973-6980.
- [34] M. Lu, S. Dutta, V. Purba, S. Dhople, and B. Johnson, "A grid-compatible virtual oscillator controller: Analysis and design" in *Proc. Energy Conversion Conference and Exposition*, 2019, pp. 2643-2649.
- [33] B. Johnson, M. Lu, V. Purba, and S. Dhople, "Circuit-equivalent models for currentcontrolled inverters" in *Proc. Workshop on Control and Modeling of Power Electronics*, 2019, 1–5.
- [32] S. Dutta, R. Mallik, B. Majmunović, S. Mukherjee, G. Seo, D. Maksimović, and B. Johnson, "Decentralized carrier interleaving in cascaded multilevel DC-AC converters" in *Proc. Workshop on Control and Modeling of Power Electronics*, 2019, 1–6.
- [31] S. Mukherjee, Y. Gao, R. Ramos, V. Sankaranarayanan, B. Majmunović, R. Mallik, S. Dutta, G. Seo, B. Johnson, and D. Maksimović, "AC resistance reduction using orthogonal airgaps in high frequency inductors" in *Proc. Workshop on Control and Modeling of Power Electronics*, 2019, 1–6.
- [30] R. Mallik, B. Majmunović, S. Mukherjee, S. Dutta, G. Seo, D. Maksimović, and B. Johnson, "Equivalent circuit models of voltage-controlled dual active bridge converters" in *Proc. Workshop on Control and Modeling of Power Electronics*, 2019, pp. 1–4.
- [29] V. Purba, B. Johnson, and S. Dhople, "Reduced-order aggregate model for parallelconnected grid-tied three-phase photovoltaic inverters," in *Proc. Photovoltaic Specialists Conference*, 2019, pp. 724–729.
- [28] B. Pierre, H. Villegas-Pico, R. Elliott, J. Flicker, Y. Lin, B. Johnson, J. Eto, R. Lasseter, and A. Ellis, "Bulk power system dynamics with varying levels of synchronous generators and grid-forming power inverters," in *Proc. Photovoltaic Specialists Conference*, 2019, pp. 880–886.
- [27] G. Seo, M. Colombino, I. Subotic, B. Johnson, D. Groß, and F. Dörfler, "Dispatchable virtual oscillator control for decentralized inverter-dominated power systems: Analysis and experiments," in *Proc. Applied Power Electronics Conference*, 2019, pp. 561–566.
- [26] M. Lu, M. Sinha, G. Seo, B. Johnson, and S. Dhople, "Adaptation of commercial current-controlled inverters for operation with virtual oscillator control," in *Proc. Applied Power Electronics Conference*, 2019.
- [25] M. Sinha, F. Dörfler, B. Johnson, and S. Dhople, "Synchronization of Lienard-type oscillators in heterogeneous electrical networks," in *Proc. Indian Control Conference*, 2018, pp. 240-245.
- [24] M. Sinha, F. Dörfler, B. Johnson, and S. Dhople, "Stabilizing phase-balanced or phasesynchronized trajectories of Van der Pol oscillators in uniform electrical networks," in *Proc. Allerton Conference on Communication, Control, and Computing*, 2018.
- [23] J. Poon, B. Johnson, S. Dhople, and S. Sanders, "Minimum distortion point tracking: Optimal phase shifting for input- or output-parallel connected DC-DC converters," in *Proc. Workshop on Modeling and Control of Power Electronics*, 2018.
- [22] M. Khan, V. Purba, Y. Lin, B. Johnson, and S. Dhople, "A reduced-order aggregated model for parallel inverter systems with virtual oscillator control" in *Proc. Workshop* on Modeling and Control of Power Electronics, 2018.

- [21] P. Achanta, M. Sinha, B. Johnson, S. Dhople, and D. Maksimović, "Self-synchronizing series-connected inverters," in *Proc. Workshop on Modeling and Control of Power Electronics*, 2018.
- [20] M. Khan, Y. Lin, M. Sinha, S. Dhople, and B. Johnson, "Stability assessment of a system comprising a single machine and a virtual oscillator controlled inverter with scalable ratings," in *Proc. Industrial Electronics Conference*, 2018.
- [19] P. Achanta, B. Johnson, and D. Maksimović, "Cascaded quadruple active bridge structures for multilevel dc to three-phase ac energy conversion," in *Proc. Applied Power Electronics Conference*, 2018.
- [18] M. Sinha, F. Dörfler, B. Johnson, and S. Dhople, "Phase Balancing in Globally Connected Networks of Lienard Oscillators," in Proc. Control and Decision Conference, 2017.
- [17] M. Sinha, B. Johnson, M. Rodriguez, J. Poon, and S. Dhople, "Decentralized interleaving of paralleled dc-dc buck converters," in *Proc. Workshop on Modeling and Control of Power Electronics*, 2017.
- [16] B. Johnson, M. Rodriguez, M. Sinha, and S. Dhople, "Comparison of virtual oscillator and droop control in islanded microgrids," in *Proc. Workshop on Modeling and Control* of Power Electronics, 2017.
- [15] V. Purba, S. Jafarpour, B. Johnson, F. Bullo, and S. Dhople, "Reduced-order structurepreserving model for parallel-connected three-phase grid-tied inverters," in *Proc. Workshop* on Modeling and Control of Power Electronics, 2017.
- [14] Y. Lin, B. Johnson, V. Purba, V. Gevorgian, and S. Dhople, "Stability assessment of a system comprising a single machine and inverter with scalable ratings," in *Proc. North American Power Symposium*, 2017.
- [13] B. Johnson, S. Salapaka, B. Lundstrom, and M. Salapaka, "Optimal structures for voltage controllers in inverters," in *Proc. International Symposium on Mathematical Theory of Networks and Systems*, 2016.
- [12] M. Sinha, F. Dörfler, B. Johnson, and S. Dhople, "Synchronization of Liénard-type oscillators in uniform electrical networks," in *Proc. 2016 American Control Conference*, 2016, pp. 4311–4316.
- [11] M. Sinha, B. Johnson, N. Ainsworth, F. Dörfler, and S. Dhople, "Nonlinear supersets to droop control," in *Proc. 2015 Workshop on Control and Modeling for Power Electronics*, 2015, pp. 1–6.
- [10] M. Sinha, F. Dörfler, B. Johnson, and S. Dhople, "Virtual oscillator control subsumes droop control," in Proc. 2015 American Control Conference, 2015, pp. 2353–2358.
- [9] S. Salapaka, B. Johnson, B. Lundstrom, S. Kim, S. Collyer, and M. Salapaka, "Viability and analysis of implementing only voltage-power droop for parallel inverter systems," in *Proc. Control and Decision Conference*, 2014, pp. 3246–3251.
- [8] F. Dörfler, S. Dhople, B. Johnson, and A. Hamadeh, "Synchronization of nonlinear circuits in dynamic electrical networks," in *Proc. IEEE European Control Conference*, 2014, pp. 552–557.
- [7] S. Dhople, B. Johnson, F. Dörfler, and A. Hamadeh, "Virtual oscillator control for voltage source inverters," in Proc. Allerton Conference on Communication, Control, and Computing, 2013, pp. 1359–1363.

- [6] B. Johnson, A. Lentine, P. Krein, and Z. Zheng, "A single-stage three-phase ac module for high-voltage photovoltaics" in *Proc. IEEE Applied Power Electronics Conference*, 2012, pp. 885–891.
- [5] P. Shenoy, B. Johnson, and P. Krein, "Differential power processing architecture for increased energy production and reliability of photovoltaic systems," in *Proc. IEEE Applied Power Electronics Conference*, 2012, pp. 1987–1994.
- [4] A. Bazzi, K. Kim, B. Johnson, P. Krein, and A. Domínguez-García, "Fault impacts on solar power unit reliability," in *Proc. IEEE Applied Power Electronics Convention*, 2011, pp. 1223–1231.
- [3] B. Johnson, P. Krein, and P. Chapman, "Photovoltaic ac module composed of a very large number of interleaved inverters," in *Proc. IEEE Applied Power Electronics Convention*, 2011, pp. 976–981.
- [2] K. Kroeger, S. Choi, A. Bazzi, B. Johnson, and P. Krein, "A digital implementation of continuous-time ripple correlation control for photovoltaic applications," in *Proc. IEEE Power and Energy Conference at Illinois*, 2010, pp. 7–11.
- B. Johnson, A. Davoudi, P. Chapman, and P. Sauer, "Microgrid dynamics characterization using the automated state model generation algorithm," in *Proc. IEEE International* Symposium on Circuits and Systems, 2010, pp. 2758–2761.

Teaching	[Spring 2023], ECE 394J-11: Advanced Power Electronics, University of Texas at					
Experience	Austin, Department: Electrical and Computer Engineering.					
	 [Fall 2022], ECE 462L: Power Electronics Laboratory, University of Texas at Austin, Department: Electrical and Computer Engineering. [Autumn 2020], EE 559: Advanced Power Electronics, University of Washington, Department: Electrical and Computer Engineering. [Spring 2020], EE 453: Electric Drives, University of Washington, Department: Electrical and Computer Engineering. 					
				[Winter 2019, Winter 2020, Winter 2021], EE 458: Power Electronics Controls,		
				University of Washington, Department: Electrical and Computer Engineering.		
				[Autumn 2018, Autumn 2019, Autumn 2021], EE 452: Power Electronics Design,		
				University of Washington, Department: Electrical and Computer Engineering.		
				[Spring 2019], EE 534: Converters in Power Systems, University of Washington,		
	Department: Electrical and Computer Engineering.					
	[Autumn 2016, Autumn 2017], ECEN 5008: Power Systems Analysis and Control,					
	University of Colorado Boulder, Department: Electrical, Computer, and Energy Engineering.					
	Grants	[Co-PI], "Universal Interoperability for Grid-Forming Inverters (UNIFI) Consortium,"				
		Department of Energy – Solar Energy Technologies Office, 2022–2027, Amount: \$25,000,000				
		[PI], "A Unified Multiphysics Approach for Modeling, Control, and Optimization of Wave Energy Converters," Department of Energy – Water Power Technologies Office, 2021–2025, Award # DE-EE0009446, Amount: \$1,500,000.				
		[PI], "A Scalable Control Architecture for 100% PV Penetration with Grid Forming Inverters," Department of Energy – Solar Energy Technologies Office, 2020–2023, Grant # DE-EE0009025, Amount: \$4,913,338.				

[PI], "Modular Wide-Bandgap String Inverters for Low-Cost Medium-Voltage Transformerless PV Systems," Department of Energy – Solar Energy Technologies Office, Sept. 2018– Aug. 2021, Award # DE-EE0008346.0000, Amount: \$2,837,106.

- [Co-PI] "Marine Energy Converter Scalability," Naval Facilities Engineering Command, April 2018–March 2021, Order # N0002418F8702, AmountL \$230,000.
- [PI], "Wide-Bandgap Modular Architectures for Medium Voltage Energy Conversion in Utility-Scale Wind and Solar," National Renewable Energy Laboratory: Lab Directed R&D, Oct. 2017–Sept. 2019, Team Members: NREL (lead), University of Colorado Boulder, Amount: \$400,000.
- [PI], "Stabilizing the Power System in 2035 and Beyond: Evolving from Grid-Following to Grid-Forming Distributed Inverter Controllers," Department of Energy –Solar Energy Technologies Office, Oct. 2015–Sept. 2018, Grant # DE-EE0000-1583, Amount: \$3,849,999.
- [PI], "Optimal Inverter Dispatch: Facilitating High PV Penetration with Optimization and Grid Informatics," National Renewable Energy Laboratory: Lab Directed R&D, Oct. 2014–Sept. 2016, Amount: \$385,774.
- [Key Personnel], "A Robust Distributed Framework for Flexible Power Grids," Department of Energy – ARPA-E, Spring 2016–Spring 2018, Team Members: University of Minnesota (lead), NREL, University of Tennessee, DynaPower LLC, Amount: \$2,950,000.
- [Key Personnel], "Community Control of Distributed Resources for Wide Area Reserve Provision," Department of Energy – Grid Modernization Laboratory Consortium, Spring 2016–Spring 2018, Collaborators: Lawrence Berkeley National Lab (lead), Sandia, Riverside Public Utility, Smarter Grid Solutions, Amount: \$3,250,000 (\$500,000 NREL share).
- PATENTS S. Mukherjee, B. Majmunovic, D. Maksimović, B. Johnson, "Planar transformers with interleaved windings and high voltage isolation," US Patent Application #(17/839,924), 2022.
 - D. Maksimović, P. Achanta, B. Johnson, M. Rodriguez, V. Gevorgian, "Modular scalable power conversion," US Patent #(10,855,203), 2020.
 - B. Johnson, S. Dhople, N. Ainsworth, F. Dörfler, "Virtual oscillator control," U.S. Patent #(10,528,687), 2020.
 - P. Krein, B. Johnson, S. Dhople, and A. Hamadeh, "Virtual oscillator control of power electronic inverters," U.S. Patent # (9,484,745), 2016.
 - B. Johnson, P. Krein, A. Lentine, "Microinverters for employment in connection with photovoltaic modules," Sandia National Laboratories, U.S. Patent # (9,143,053), 2015.
 - B. Johnson, P. Krein, and P. Chapman, "Inverter array with localized inverter control," SolarBridge Technologies, U.S. Patent # (8,842,454), 2014.

Honors and	• National Science Foundation CAREER Award	(2022-2027)
Awards	• Best Paper Award – IEEE Transactions on Energy Conversion	(2019)
	• NREL Outstanding Mentor Award (2015, 2016, 2017)
	• NREL Chairman's Award for Exceptional Performance	(2013)
	• National Science Foundation Graduate Research Fellowship	(2010-2013)
	• University of Illinois Graduate College Fellowship	(2008-2010)
	• Support for Under-Represented Groups in Engineering Fellowship	(2008-2010)
	• Outstanding Presentation Award – Applied Power Electronics Co	nference (2011)
	• Outstanding Graduating Physics Major	(2008)

• Houston Louis Stokes Alliance for Minority Participation Scholarship (2006-2008)

Service	 Editorial Experience: Associate Editor for IEEE Transactions on Energy Conversion (201) Associate Editor for IEEE Transactions on Power Systems Letters Guest Editor-in-chief for IEEE Transactions on Energy Conversion Power Conversion and Control in Photovoltaic Power Plants (2019) Guest Editor for IEEE Transactions on Energy Conversion Special Advanced Distributed Control of Energy Conversion Devices and S Conference and Workshop Service: Co-organizer of "Special Session on Grid-forming Inverters in Future I in Industrial Electronics Conference (2020) Lead Organizer of Workshop on "Grid-forming Inverters for Low-inert University of Washington campus, Seattle, WA (2019) Chair for "Power Electronics and Grid Integration" Topic Area: Phote Conference (2019) Chair for "Distributed Resources and Microgrids" Topic Area: Ener Conference and Congress (2019) Technical Program Committee: IEEE Workshop on Control and Mod Electronics (COMPEL) (2015) Session Chair: IEEE Power and Energy Conference at Illinois (2011) Volunteer Coordinator: IEEE Energy Conversion Conference and Experimental Electronics (Conference and Energy Conference and Experimental Electronics (Conference and Energy Conference and Experimental Electronics (Conference and Energy Conference and Electronics (2015) 	6-present) (2019-present) Special Issue:) Issue: Systems (2015) Power Systems" Sia Power Systems," ovoltaic Specialists ergy Conversion deling for Power 1, 2012) cposition (2013)	
Professional Experience	University of Washington, Department of Electrical Engineering, Seattle, WA Washington Research Foundation Innovation Assistant Professor 2018 – 2022		
	National Renewable Energy Laboratory, Golden, CO Electrical Engineer	2013 - 2018	