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Abstract—The objective of this paper is to realize a universal
dc-side controller for photovoltaic (PV) systems where the control
is agnostic to the downstream converter configuration. To achieve
this, the downstream power converter and its controls are
manipulated into an effective power control loop that is then
cast into a generalized multi-loop design framework. On the
dc side, a nonlinear small-signal model of the PV input is
realized exclusively in terms of PV datasheet parameters (i.e.,
open-circuit voltage, short-circuit current, and maximum power
point). Finally, a linear controller is used to modulate the dc-
side PV system with the generic downstream power controller.
A Lyapunov candidate is proposed to analyze the stability of
the interconnected system and provide a streamlined approach
for the controller design. The proposed design is validated on
a 1 kVA experimental setup that interfaces a PV module to the
grid.

I. INTRODUCTION

Design of generic dc-side controls in grid-connected pho-
tovoltaic (PV) systems is impeded by the wide range of
converter topologies that may appear on the downstream dc-ac
conversion stage [1]. In this paper, we focus on developing
a generalized dc-side controller that is agnostic to the dc-
ac converter topology and its control. Toward that end, we
manipulate everything downstream to the PV module into an
effective power control loop that interacts with the maximum
power point tracker (MPPT) and the PV dc-link control such
that stable and robust power dispatch are realized. The primary
focus of this paper is to propose a systematic design procedure
for the PV dc-link controller. Our approach leverages the
Lyapunov theory to analyze the stability of the interconnected
system and provide closed-form expressions of the controller
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Efficiency and Renewable Energy Solar Energy Technologies Office, grant
numbers DE-EE0009025 and DE-EE0008346, the Washington Research
Foundation, and the National Science Foundation through grant 1509277
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paid-up, irrevocable, worldwide license to publish or reproduce the published
form of this work, or allow others to do so, for U.S. Government purposes.
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Fig. 1: Generalized control loop structure for a PV system and its converter(s).
The entire downstream converter and control are encapsulated into an equiv-
alent first order transfer function whose effective bandwidth is ωP. For this
paper we focus exclusively on the highlighted dc-link control.

gains that are universally applicable to any PV-connected
system.

Accurate modeling of PV is essential to capture the insta-
bilities that can appear when interacting with the other loops
in the system. Existing PV modeling approaches [2] typically
depend on knowledge of physics-based parameters which often
need extensive experimentation to characterize. This is avoided
in [3] by linearizing the PV model around the maximum power
point (MPP) such that only the MPP voltage and current are
needed. However, we will show that such models fail to predict
instabilities that arise when oscillations around the MPP are
sufficiently large.

To capture the fidelity of the small-signal model throughout
the PV operation from open-circuit to short-circuit condition,
the notion of PV dynamic resistance, which we denote as
rpv, was first proposed and experimentally validated in [4].
Existing linear small-signal impedance models of dc-dc con-
verters [5], [6] and inverters [7], [8] were eventually modified
to include PV dynamic resistance. Similarly, the concept
of dynamic resistance was extended to dc-dc converters [9]
and inverters [10] in the state-space formulation. These ap-
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Fig. 2: The multi-stage converter architecture above will serve as a case study for our approach. The converter module comprises three isolated dual-active
bridges that each have an ac-side single-phase inverter that interfaces with an ac grid. The various interacting control loops within the converter are shown.

proaches generate transfer functions [7] and state-transition
matrices [10] which are heavily dependent on the converter
topology and its parameters. This method resulted in an
iterative design procedure which sought stable phase margin
values and negative eigenvalues. Additionally, the small-signal
impedance in these models are obtained experimentally [4] and
may change among different PV panels. To circumvent this,
we obtain a new PV dynamic resistance that relies exclusively
on the parameters provided in PV datasheets. Namely, we
utilize the open-circuit voltage, Voc, short-circuit current, Isc,
maximum power point voltage, Vmpp and maximum power
point current, Impp. This new small-signal model compared
to [3] is shown to be valid across all operating points of the PV
curve. Moreover, experimental characterization is unnecessary
as in [4].

With an accurate PV model and the downstream power
control loop designed appropriately, we next design a general-
ized PV dc-link controller that is agnostic to the downstream
converter topology. Sandwiched between the slower MPPT
control and the faster power control loop, the design of the
generalized PV dc-link controller now becomes a multi-loop
control design problem. Conventionally, such problems have
been tackled by separating the control subsystems shown in
Fig.1 by their respective bandwidths where we design outer
loops to be slower and the inner loops to be faster. As the
final contribution of this paper we identify shortcomings of
timescale-separation-based design methods when applied to
the PV model [3]. We then implement a Lyapunov candidate
to analyse stability of the dc-link controller. We show that the
Lyapunov-based design approach uncovers new and non-trivial
conditions that are critical to modeling system stability.

The rest of the paper is organized as follows: Section II
gives an overview of the system dynamics and describes
the MPPT and the power control loop. Modeling, control
design, and Lyapunov-based stability conditions for the dc-
link controller are presented in Section III. Claims are verified

with experimental results in Section IV.

II. SYSTEM DESCRIPTION AND DYNAMICS

In this section, we outline the PV system and its control
structure.

A. System Architecture

We consider a PV module interfacing with a downstream
power electronic converter that is responsible for transfer of
energy from the PV to a variety of output resources like grid,
battery, or standalone loads. The MPPT controller, PV dc-link
controller, and power controller in Fig. 1 work within their
own respective timescales to ensure stable operation.

The MPPT controller measures the PV voltage and current
to compute the reference voltage, v⋆pv, for the PV dc-link
controller which in turn generates the active power reference
P ⋆ for the power converter. As the faster power controller
rapidly extracts P ⋆ power from the PV module, the PV
voltage, vpv, closely matches the reference, v⋆pv. Finally, as the
MPPT controller slowly nudges v⋆pv to the maximum power
point voltage, Vmpp, the downstream power converter is able
to extract the maximum power from the PV.

B. Converter Description

Although the proposed PV modeling and controller design is
agnostic to the downstream converter and control, we consider
a two-stage converter shown in Fig. 2 for our present analysis.
Fig. 2 shows a dual-active bridge based isolated dc-dc stage
that connects to the grid through three single-phase inverters.
The different hardware stages and associated control loops are
described next.

1) Dc-dc Quadruple Active Bridge: We consider a quadru-
ple active-bridge (QAB) based converter [11] connected to
the PV module in Fig. 2. The isolated dc-dc stage is formed
by three identical dual-active bridge converters that share a
primary H-bridge connected to the PV module. Three 1 : n
transformers provides high-frequency isolation between the
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primary and each of the three secondary bridges. All four H-
bridges of the QAB are modulated with 50% duty ratio. The
phase shift, φ = [φa, φb, φc]

⊤, between the primary bridge
and each of the secondary bridge is modulated to ensure each
of the floating dc-link voltages, vdc = [vadc, v

b
dc, v

c
dc]

⊤, are
regulated to track n times the input voltage, vpv. For each of
the three phases, j ∈ {a, b, c}, the phase shifts are generated
by respective proportional-integral (PI) controllers as follows:

φj = kp,dc(nvpv − vjdc) + ki,dc

∫
(nvpv − vjdc)dt. (1)

The controller gains kp,dc and ki,dc are chosen to ensure that
the floating dc-link control loop is the fastest subsystem such
that its dynamics are invisible to the other control loops in
Fig. 2.

2) Three Single Phase H-bridge: We consider a three-phase
grid voltage of the form



vag
vbg
vcg


 =




Vg cos(θg)
Vg cos

(
θg − 2π

3

)

Vg cos
(
θg − 4π

3

)


 , (2)

where Vg is the nominal peak grid voltage and θg =
∫ t

0
ωgdσ

is the instantaneous grid angle. The set of three H-bridges
at the output of the floating dc-link capacitors is connected
to the three-phase grid through a line whose inductance and
resistance is Lf and Rf respectively.

The H-bridges are modulated by a dispatchable virtual
oscillator controller (dVOC) [12] as follows:

V̇ = µV
(
V 2
g − V 2

)
− 2η

3V
(Q−Q⋆), (3)

θ̇ = ω = ω0 −
2η

3V 2
(P − P ⋆), (4)

where the active and reactive power delivered by the module is
denoted by P and Q respectively. Controller gains µ and η are
selected to implement a nonlinear volt-Var and frequency-watt
droop [13]. The voltage at the output of the three inverters are
modulated as 


va

vb

vc


 =




V cos(θ)
V cos

(
θ − 2π

3

)

V cos
(
θ − 4π

3

)


 . (5)

To simplify our analysis, we set the reactive power set-point
Q⋆ to be zero and define the relative angle between the inverter
and grid, θ − θg, equal to δ.

The angular dynamics of (4) in terms of δ becomes

δ̇ = − 2η

3V 2
(P − P ⋆). (6)

We now use two assumptions: first, the line connecting the
inverter to the grid is predominantly inductive such that
Lfω ≫ Rf . Additionally, the angle δ at rated power is
sufficiently small which allows us to approximate sin δ ≈ δ to
obtain the active power delivered to the grid as

P =
3V Vgδ

2Lfω
.

We take a time derivative on both sides of the preceding
equation and substitute for δ̇ in (6) to obtain

2Lfω

3V Vg
Ṗ = − 2η

3V 2
(P − P ⋆). (7)

A properly selected value of µ ensures tight voltage regulation
such that V ≈ Vg. This simplifies (7) as

1

ωP
Ṗ :=

Lfω

η
Ṗ = −P + P ⋆. (8)

Taking a Laplace transform on both sides yields a first-order
plant transfer function of the power control loop as follows:

P =
ωP

s+ ωP
P ⋆. (9)

A similar analysis can be carried out for any candidate power
converter to obtain an equivalent first-order transfer function
for the power control loop.

3) MPPT Controller: The MPPT controller leverages the
concavity of a typical PV power-voltage curve to reach the
MPP. At MPP, the derivative of PV power, Ppv, with respect
to PV voltage, vpv, is zero. We use this property to formulate
an integral control law [14] given by

v⋆pv = γ

∫
(∂Ppv/∂vpv)dt, (10)

where v⋆pv forms the reference for the PV dc-link controller.
A linear approximation of the PV plant obtained around the
MPP is given by

ipv = Impp − 1

Rmpp
(vpv − Vmpp). (11)

We differentiate (10) with respect to time and substitute ipv
from (11) to obtain

v̇⋆pv = γ
∂(vpvipv)

∂vpv
= γ(vpv

∂(ipv)

∂vpv
+ ipv),

= −2
γ

Rmpp
vpv + 2γImpp.

Since the PV dc-link controller works on a faster timescale,
we substitute vpv = v⋆pv to obtain the following equivalent
first-order transfer function of the MPPT loop:

v̇⋆pv = − 2
γ

Rmpp︸ ︷︷ ︸
ωmppt

v⋆pv + 2γImpp (12)

Having modeled the MPPT control loop and the ac-side power
sharing loop with closed form expressions of their respective
bandwidths, we shift our focus towards the main contribution
of the paper – the PV dc-link control.

III. PV DC-LINK CONTROL

As shown in Fig.1, the dc-link capacitance, Cpv, acts as
an energy buffer between the input PV power, Ppv and the
output power at the converter terminals, P . The dynamics of
the dc-link voltage, vpv, is

d

dt

(1
2
Cpvv

2
pv

)
= Ppv − P = vpv ipv − P

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.
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Cpvvpv
dvpv
dt

= vpvipv − P. (13)

We implement the following PI controller to regulate vpv
towards the reference, v⋆pv:

P ⋆ = kp(vpv − v⋆pv) + ki

∫
(vpv − v⋆pv)dt, (14)

where the P ⋆ is the output power reference for the downstream
converter.

A. Conventional Modeling and Design

1) Modeling: An exact representation of the the PV current
in terms of its physical parameters [2] is given by

ipv = io − isat

(
e

vpv+ipvRs
aVT − 1

)
, (15)

where io is the photocurrent generated due to incident sunlight,
isat is the diode saturation current, and Rs is the series equiv-
alent resistance. VT is the thermal equivalent voltage and a is
the diode-ideality constant. In the conventional approach [3], a
linear approximation of the PV plant is obtained only around
the MPP as follows:

ipv = Impp − β(vpv − Vmpp), (16)

where Vmpp and Impp are the voltage and current at the MPP
and β is approximated as

β =
∂ipv
∂vpv

∣∣∣∣
vpv=Vmpp

≈ Impp

Vmpp
.

Around the nominal point vpv = Vmpp, (13) reduces to

Cpv
d

dt
vpv = ipv −

P ⋆

Vmpp
.

Substitution of (16) yields

Cpv
d

dt
vpv = Impp − β(vpv − Vmpp)−

P ⋆

Vmpp
.

Taking the Laplace transform of both sides of the equation
yields

vpv(s) =
Impp + βVmpp

sCpv + β︸ ︷︷ ︸
Disturbance

− P ⋆/Vmpp

sCpv + β︸ ︷︷ ︸
Control

. (17)

2) Controller Design: We implement the plant-inversion
method [15] on (17) to obtain the PI controller gains

kp = ωpvVmppCpv, ki = ωpvVmppβ. (18)

3) Stability Criteria: To ensure stable operation, the band-
widths are separated in the timescale as follows:

ωmppt ≪ ωpv ≪ ωP

We substitute the bandwidths from (8)–(12) to obtain
2γ

Rmpp
≪ ωpv ≪ η

Lfω
, (19)

where ωpv satisfies (19).

B. Proposed Modeling and Design Approach

1) Modeling: The conventional PV model in (15) presents
two important caveats. First, the transcendental equation (15)
for ipv is itself a function of ipv, as a result of which a solution
of ipv for small-signal analysis is elusive. Additionally, the
parameters described in (15) are not readily available from PV
manuals. On the contrary, the model in [16] specifies the PV
voltage, vpv, exclusively in terms of the commonly available
PV parameters- Voc, Isc, Vmpp, and Impp. The relationship
between vpv and ipv is given by

vpv =

Voc ln

(
2−

(
ipv
Isc

)N
)

ln(2) −Rs(ipv − Isc)

1 + RsIsc
Voc

, (23)

where the additional parameters, Rs, N, and α [16] depend
exclusively on Voc, Isc, Vmpp, and Impp. We use the afore-
mentioned model to define the new small signal PV resistance,
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rpv, as

rpv := −∂vpv
∂ipv

=

Vmpp−Voc

Impp
+

Vocρ
(

ipv
Isc

)γ−1
κ1

Isc log
(

Impp
Isc

)((
ipv
Isc

)γ
−2

)
κ2

Isc(Vmpp−Voc)
ImppVoc

− 1
,

(24)
where the quantities γ, ρ, κ1, and κ2 are given by

γ = log


2− 1

2
Vmpp

(
Isc(Vmpp−Voc)

ImppVoc
−1

)
+

(Impp−Isc)(Vmpp−Voc)
Impp

Voc


 ,

ρ =
γ

log
(

Impp

Isc

) , κ1 = 9.007× 1015, κ2 = 6.243× 1015.

The constants κ1, κ2 are universal for any PV module. The
model described by (23) is plotted in Fig. 3(a) to accurately
capture the PV characteristics. In Fig. 3(b), we plot the large-
signal PV resistance, denoted by Rpv := Vpv/Ipv, and rpv
appearing in (24).

In the constant current (voltage) region, the small-signal
resistance is larger (smaller) than the corresponding large-
signal resistance. Whereas around the MPP, the two resistances
have comparable values. We will subsequently use these three
regions and the values of their corresponding small- and
large-signal resistances to analyse and design the PV dc-link
controller.

To include the small-signal PV resistance, we perturb the

nonlinear dynamics of the capacitor voltage in (13) around a
nominal operating point to obtain

Cpv(Vpv + ṽpv)
d

dt
(Vpv + ṽpv)

= (Vpv + ṽpv)(Ipv + ĩpv)− (P ⋆ + p̃⋆).

The large-signal terms balance themselves and are removed
from both sides of the preceding equation to obtain the
following [7] nonlinear small-signal model:

CpvVpv
d

dt
(ṽpv) = Ipvṽpv + Vpv ĩpv + ṽpv ĩpv − p̃⋆ (25)

Substitute the definition of rpv from (24) into (25) to obtain

CpvVpv
d

dt
(ṽpv) = ṽpv

Vpv

Rpv
+ Vpv

−1

rpv
ṽpv + ṽpv

−1

rpv
ṽpv − p̃⋆

= Vpv

(
1

Rpv
− 1

rpv

)
ṽpv −

1

rpv
ṽ2pv − p̃⋆.

The small-signal power reference, p̃⋆, obtained by lineariz-
ing (14) around the nominal operating point is

p̃⋆ = kp(ṽpv − ṽ⋆pv) + x̃pv,

where the integral state variable xpv is defined as

ẋpv = ki(vpv − v⋆pv).

We compose the small signal state vector y = [ṽpv, x̃pv]
⊤

whose dynamics are given by ẏ = f(y, ṽ⋆pv), where the flow

dṽpv
dt

=
1

Cpv

(
1

Rpv
− 1

rpv

)
ṽpv −

1

CpvVpvrpv
ṽ2pv −

1

CpvVpv

(
kp(ṽpv − ṽ⋆pv) + x̃pv

)
=: f1, (20)

dx̃pv

dt
= ki(ṽpv − ṽ⋆pv) =: f2 (21)

V̇ = ṽpv ˙̃vpv + x̃pv
˙̃xpv =

1

Cpv

(
1

Rpv
− 1

rpv

)
ṽ2pv −

1

CpvVpvrpv
ṽ3pv −

1

CpvVpv

(
kpṽ

2
pv + x̃pvṽpv

)
+ kix̃pvṽpv

=

(
1

Cpv

(
1

Rpv
− 1

rpv

)
− kp

CpvVpv

)
ṽ2pv −

1

CpvVpvrpv
ṽ3pv

︸ ︷︷ ︸
:=g1(ṽpv)

+ x̃pvṽpv

(
ki −

1

CpvVpv

)

︸ ︷︷ ︸
g2

. (22)
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Fig. 5: Experimental results illustrate the dc- and ac-side quantities zoomed in on a few ac cycles for controllers designed with Lyapunov analysis for the
proposed PV model. In (a) we observe the start-up at open-circuit condition. MPPT operation at MPPa and MPPb are shown in (b) and (c) respectively.

vector f := [f1, f2]
⊤ is expanded in (20) and (21). Without

loss of generality, we analyze the stability of the system
ẏ = f(y, v⋆pv) at zero input such that ṽ⋆pv = 0. Assuming
f := [f1, f2]

⊤ is locally Lipschitz, we choose a positive
definite Lyapunov candidate, V = 0.5(ṽ2pv + x̃2

pv) to analyze
the stability of the PV dc-link control. In (22) we obtain the
derivative of V along the trajectory of the system ẏ = f(y).

2) Controller Design: To ensure asymptotic stability, we
require a strictly negative derivative of the Lyapunov candidate
such that V̇ < 0. Since the product of states ṽpvx̃pv does
not guarantee strict negativity, we set its coefficient in (22) to
zero. This gives our first design equation: ki = 1/(CpvVpv).
To design a fixed controller gain that does not vary with the
operating voltage, we set Vpv = Vmpp. The controller gain, ki,
is obtained as

ki = 1/(CpvVmpp). (26)

Next, we simplify V̇ by observing the relationship between
Rpv and rpv in different regions of the PV curve as shown in
Figure 3(b). The three distinct regions of operation: constant
current region (CCR), MPP region, and constant voltage region
(CVR) yield

rpv ≫ Rpv in CCR,
rpv ≈ Rpv ≈ Rmpp around MPP,
rpv ≪ Rpv in CVR. (27)

The relationship between rpv and Rpv from (27) is substituted
into g1(ṽpv) in (22) to simplify V̇ as

V̇ =
1

CpvVpv
(Ipv − kp)ṽ

2
pv in CCR,

= − 1

CpvVpv

(
ṽpv
Rmpp

+ kp

)
ṽ2pv around MPP,

= − 1

CpvVpv
(kp +

Vpv

rpv
)ṽ2pv in CVR. (28)

3) Stability Criteria: It is readily seen from (28) that for
a non-negative kp stability is always guaranteed in CVR.
Stability is further guaranteed in CCR if

kp > Ipv, (29)

where the maximum value of Ipv is Isc. Stability can only
be guaranteed locally around the MPP. Since V̇ = −(kp +
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100 V/div
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pvv
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ai cibi

ocV
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Fig. 6: Experimental waveforms capture the dc- and ac-side quantities for
controllers designed based on Lyapunov theory for the proposed PV model as
the PV panel moves from open-circuit condition to MPPa and MPPb without
any instabilities.

TABLE I
SYSTEM PARAMETERS.

Symbol Description Value Units

A
c

sy
st

em

Srated module VA rating 1000 VA
fsw,i inverter switching frequency 10 kHz
Vg rms line-neutral grid voltage 30 V
ωnom rated frequency 60 Hz
Lf inductance 4.8 mH
Rf resistance 0.8 Ω
µ dVOC controller gain 1 1 V−2s−1

η dVOC controller gain 2 100 Ω s−1

M
PP

T
&

PV

Cpv PV input capacitance 660 µF
Voc open- circuit voltage 200 V
Isc,a short- circuit current at MPPa 4.0 A
Isc,b short- circuit current at MPPb 6.0 A
Vmpp MPP voltage at MPPa, MPPb 160 V
Impp,a MPP current at MPPa 3.0 A
Impp,b MPP current at MPPb 5.0 A
kp proportional gain 10 A
ki integral gain 9.47 As−1

γ MPPT gain 0.0533 Ω s−1

ṽpv/Rpv)ṽ
2
pv, a large value of kp ensures a larger region of

attraction. The concavity of the PV curve and the relatively
tight MPP range guarantees that when larger oscillations cause
operating point swings, it is quickly pushed into the CCR
or CVR. Since both CCR and CVR are stable under the
assumption of kp > Isc, the MPP point, and hence the whole
system, is also rendered stable.
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IV. EXPERIMENTAL RESULTS

The QAB-based dc to three-phase ac converter shown in
Fig. 2 is used to validate the proposed control approach. At
the dc input of the QAB, a Solar Array Simulator (SAS)
emulates the following PV curve: Vmpp = 160V, Voc =
200V, Impp = 3A, Isc = 4A. We will refer to this curve
as MPPa. To study the robustness of the proposed controller
against varying insolation, we switch between MPPa and
MPPb, where the latter is the PV curve corresponding to
Vmpp = 160V, Voc = 200V, Impp = 5A, and Isc = 6A.

A. Experimental Results with Conventional Controllers

Fig. 4 shows the experimental results with the conventional
controller. We show three sets of controllers designed via
timescale separation based on the conventional model of (17).
Three dc-link control bandwidths of 0.1 rad/s, 1.0 rad/s, and 10
rad/s are accommodated between the faster power controller
of bandwidth ωP = η/Xf = 55 rad/s, and the slower MPPT
controller of bandwidth ωmppt = 2γ/Rmpp = 0.001 rad/s. We
observe that for each set of controllers, the transition from
the open-circuit condition to MPP is stable. Instability sets
in when the oscillations around the MPP push PV operation
into the CCR, after which the converter is no longer able to
achieve stable operation. This matches well with our Lyapunov
analysis where the three controllers are designed via timescale
separation such that kp < Ipv violates the stability constraint
of (29).

B. Experimental Results with Proposed Controller

MPPT operation with the proposed controller is shown
in Fig. 6. We choose kp = 10A to satisfy (29) when
the short-circuit currents at MPPa and MPPb are 4 A and
6 A respectively. Similarly for Vmpp = 160V, we choose
ki = 9.47As−1 to satisfy (26). For exact comparison with
the controller obtained by conventional design, ωmppt and ωP

are kept identical. The proposed controller is able to reach
MPPa with stable operation at the MPP. To test the robustness
of the proposed strategy, the insolation of the PV simulator is
abruptly changed to emulate MPPb. The proposed controller is
able to ride-through the transient and reach MPPb with stable
power dispatch at the new operating point.

We focus on the steady-state performance of the proposed
controller in Fig. 5 over a few ac cycles. In Fig.5(a) we
capture the initial steady-state where the inverter switched
output voltage for the phase-a, vainv, is exactly synchronized to
the corresponding grid voltage, vagrid. Steady state operation
at MPPa is shown in Fig. 5(b) where the inverter switched
voltage, vainv, is phase-shifted from the grid-voltage, vagrid, to
extract approximately 480 W of solar power. Similarly, stable
operation is shown with greater phase-shift and higher ac-
side currents in Fig. 5(c) where the converter ensures smooth
operation at MPPb.

V. CONCLUSION

In this paper, we proposed a generalized technique for
the design of control loops in PV-connected converters.

A nonlinear small-signal model of the PV module was
developed that relies exclusively on datasheet parameters
(Vmpp, Impp, Voc, Isc). A Lyapunov-based approach was used
to analyse and design the PV dc-link controller. We uncovered
new stability conditions that are absent from conventional
timescale-separation-based design techniques. The proposed
design technique is validated experimentally and results il-
lustrate the criticality of the stability conditions obtained from
Lyapunov analysis.
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