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Benchmarking Nonlinear Oscillators for
Grid-Forming Inverter Control
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Abstract—Virtual oscillator control (VOC) is a time-domain
strategy that leverages the dynamics of nonlinear oscillator circuits
for synchronizing and regulating grid-forming inverters. In this
article, we examine a class of second-order circuits composed of a
harmonic oscillator and nonlinear state-dependent damping that
has found extensive interest in the context of VOC. We center
our analysis on the Van der Pol, Dead-zone, and Andronov-Hopf
oscillators; these are characterized by several distinguishing at-
tributes but they all share the common structure noted above.
Analytical methods based on averaging and perturbation theory
are outlined to derive several performance metrics related to har-
monic and dynamic properties of these oscillators under a unified
framework. Our results reveal that the Andronov-Hopf oscillator
is well suited for grid-forming inverter applications since it can
yield harmonics-free waveforms without compromising dynamic
performance. Analytical results are validated with numerical sim-
ulations and experiments, and a multiinverter hardware setup is
used to illustrate a practical use case.

Index Terms—Andronov-Hopf oscillator, averaging, dead-zone
oscillator, grid-forming (GFM) inverters, harmonics, perturbation
analysis, Van der Pol oscillator.

I. INTRODUCTION

POWER electronics inverters are expected to provide many
ancillary services in modern power systems while actively

participating in regulating and supporting the network voltages
and frequency [1], [2]. Inverters with decentralized controls
that can sustain ac voltages and satisfy loads in the absence of
machinery are commonly referred to as grid-forming (GFM)
inverters [3]–[6]. In recent years, nonlinear oscillators have
found applications in realizing inverter controllers for such GFM
systems [7]–[15]. Controllers of this type are referred to as
virtual oscillator controllers (VOC) [11], [14], [16]–[18]. A
single-phase VOC inverter implementation is shown in Fig. 1,
where the nonlinear oscillator dynamics are digitally executed
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Fig. 1. Implementation of oscillator-based controls. The output current if acts
as the feedback signal and is compared against the setpoint i�f . The scaled current
signal iin is extracted from the virtual oscillator, and the controller states actuate
the power stage via PWM.

and the dynamic state variable v is scaled to give the modulation
signal m. With such a closed-loop structure, any given VOC
inverter mimics the dynamics of a nonlinear oscillator and mul-
tiple interconnected VOC units tend to synchronize their outputs
without explicit communication [19]–[23]. Furthermore, since
the controller is realized entirely in the time domain, it offers
superior dynamic performance compared to phasor-based meth-
ods, such as conventional droop-based controllers [24]–[26]. In
addition to applications focused on GFM inverter applications,
we note that nonlinear oscillators have also been used for de-
centralized pulse width modulation (PWM) timing control [27],
[28] and synchronization of series-connected converters [29],
[30].

In this article, we study the performance of three types of
VOC implementations that have appeared in recent years and
unify them under a cohesive analytical framework. To this end,
averaging and perturbation methods are applied to characterize
the dynamical models and harmonic properties of a class of
oscillators composed of a second-order harmonic oscillator [31]
with nonlinear state-dependent damping. We center our investi-
gations around the most frequently used Van der Pol, dead-zone,
and Andronov-Hopf oscillators, whose circuit realizations are
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Fig. 2. In this work we examine equivalent circuits for the three oscillators.
Each oscillator is composed of an LC tank, a negative conductance σ, and a
nonlinear state-dependent current source f(vC, iL).

sketched in Fig. 2 and conform to the aforementioned generic
structure [32]. We rigorously characterize a variety of attributes
for these oscillators including equilibria, small-signal stability, a
notion of rise time, higher-order harmonic content, and oscilla-
tion frequency. The analytical developments are exhaustively
verified with numerical simulations and experimental results
wherein the oscillator dynamics underlie controllers for GFM
inverters.

Our focus on perturbation and averaging is deliberate as it
facilitates the translation of results to a broad class of nonlinear
dynamical systems for which trajectories generated cannot be
described in analytical closed form [33], [34]. In the context
of the nonlinear circuits we examine, two particular attributes
significantly facilitate analysis: 1) the vector fields that drive
the oscillator amplitude and phase dynamics are periodic func-
tions; 2) in the weakly nonlinear parametric regime where
ε =

√
L/C � 1, the Van der Pol and dead-zone oscillators

generate nearly sinusoidal trajectories. Larger values of ε yield
so-called relaxation limit cycles [35]. (Interestingly, harmonic
content in the Andronov-Hopf oscillator [36] is invariant to
the choice of ε; a property that we prove rigorously and one
that is not immediately obvious from the dynamic model.) The
combination of these two attributes allows us to apply averaging
and perturbation to characterize the dynamics of these nonlinear
oscillators. We provide a brief overview of these methodologies
as follows.

1) Averaging involves integrating the driving vector fields
under the presumption of operating in the weakly non-
linear regime. This isolates separable and autonomous
models for amplitude and phase dynamics [37]. The av-
eraged model allows us to characterize time-domain per-
formance, equilibria, and small-signal stability.

2) Perturbation involves searching for solutions to the non-
linear dynamic models in the form of a power series where
terms of increasing order diminish in size [38]. The idea
being that while solutions to the original nonlinear models
cannot be obtained analytically, order-by-order solutions
for terms in the power series can be determined through
a sequence of progressive substitutions and algebraic
manipulations [39]. This allows us to parameterize the
harmonic content and oscillation frequency.

TABLE I
CONTRIBUTIONS OF THIS ARTICLE (+); STATE OF THE ART (�)

In addition to the choice of analytical methods, the collec-
tion of oscillators we examine is also intentional. The Van der
Pol oscillator [40] undeniably enjoys unparalleled recognition
as a prototypical example in introducing nonlinear dynamical
systems [41]. This circuit, therefore, serves as a natural starting
point and establishes the baseline in our effort. The dead-zone
oscillator [42] generates waveforms that are superficially similar
to the Van der Pol oscillator, but the piece-wise continuous
nonlinearity [see Fig. 2(b)] introduces severe analytical obsta-
cles to characterizing performance. To overcome the challenges
associated with this circuit, we introduce a set of innovations
within the conventional averaging and perturbation frameworks.
Finally, the Andronov-Hopf oscillator [43] is unique in that the
circuit always generates perfectly sinusoidal trajectories free of
harmonics in steady state. Taken together, this trio of oscilla-
tors provides illustrative boundary cases for the averaging and
perturbation methods and show the versatility of the proposed
framework in performance characterization.

This article provides several analytical contributions through
the process of applying averaging and perturbation to examine
the dynamics of the Van der Pol, dead-zone, and Andronov-Hopf
oscillators. For instance, the piece-wise continuous nonlinearity
in the dead-zone oscillator is incompatible with perturbation
methods. This is circumvented by resorting to a Fourier-series
expansion of the nonlinearity and incorporating the resulting
terms alongside the series expansion in the perturbation analysis.
We anticipate this general strategy being useful in other circuits
that have similar discontinuities in their dynamic models; a
well-known example is Chua’s circuit [46]. Furthermore, to the
extent possible, our analytical examinations are presented in a
unified manner and this uncovers several cross-cutting links. For
instance, boundary conditions that emerge from the perturbation
analysis yield expressions for equilibrium amplitudes that pre-
cisely match those recovered from a steady-state analysis of the
oscillator averaged dynamics. By and large, the article unifies
models (Cartesian, polar, and circuit representations), methods
(averaging and perturbation), and attributes (dynamic and har-
monic). Table I provides an overview of the contributions of this
article alongside the state-of-the-art for the three oscillators with
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regard to modeling formalisms, applied methods, and examined
attributes. After outlining foundational theory, we then analyze
the impact of current feedback on system dynamics and pro-
vide an associated design framework that respects user-defined
performance metrics. As evidenced in the experimental results,
this allows us to translate fundamental modeling advances into
practical design and hardware implementations.

The rest of this article is organized as follows. In Section II,
modeling and analysis preliminaries are covered. Averaging and
perturbation theory are outlined in Sections III and IV to charac-
terize amplitude dynamics and steady-state frequency content,
respectively. Section V provides an analysis of voltage and fre-
quency dynamics in the presence of current feedback in a prac-
tical power electronics setting. This also lays the groundwork
for a design framework. Once relevant performance metrics are
in hand, they are validated in Section VI for the Van der Pol,
dead-zone, and Andronov-Hopf oscillators via simulations and
experiments. In addition, a multiinverter power system is built to
substantiate the performance of the Andronov-Hopf oscillator.
Finally, Section VII concludes this article.

II. MODELS AND CIRCUIT REPRESENTATIONS

In this section, we outline dynamic models for the three
oscillators in Cartesian and polar coordinates as well as circuit
representations. Table II collects pertinent dynamic and har-
monic attributes of all three oscillator models in one place. It
primarily serves as a quick reference guide and the derivations
later will substantiate its content.1,2

A. Dynamic Model in Cartesian Coordinates

The oscillator dynamics in Cartesian coordinates are

ẋ = εω0(σx− f(x, y))− ω0y (1a)

ẏ = ω0x (1b)

where x, y are state variables, ω0 > 0 is the natural frequency
and σ, ε > 0 are scalar constants.

Notice that ε captures the extent to which the nonlinear func-
tion f(x, y) affects system dynamics; with ε = 0, (1) boils down
to the dynamics of a simple harmonic oscillator. The dynamics of
x and y are interdependent, and the nonlinear coupling through
f(x, y) serves up several analytical challenges. In this work, we
are interested in the weakly nonlinear regime characterized by
ε� 1 [41]. As we develop circuit interpretations going forward,
we will show that f(x, y) can be thought of as a single-port
dissipative circuit element and σ has the connotation of a con-
ductance. The dynamics (1) can be equivalently expressed as the
second-order system

ẍ+ 2 ζ(x, y)ω0 ẋ+ ω2(x, y)x = 0 (2)

wherey(t) = ω0

∫
xdt [see (1b)], and ζ(x, y) andω(x, y) are re-

ferred to as the generalized-damping and generalized-frequency

1All decimal numerical values are specified with three significant digits.
2Values of θ1, . . . , θ4 referenced in (15) and (18) are given in (34).

functions, respectively. These are given by

ζ(x, y) :=
ε

2

(
∂f

∂x
− x

y

∂f

∂y
− σ

)
(3)

ω(x, y) := ω0

(
1 + ε2

σx− f(x, y)

y

∂f

∂y

) 1
2

. (4)

See Appendix A for the derivation. The form (2) is reminis-
cent of a classical unforced second-order oscillator [47]. Key
differences are that the damping and frequency factors are now
expressed as time-varying and state-dependent functions.

B. Dynamic Model Interpreted as a Circuit

The building block of the circuit representation is an electrical
LC tank with inductance L and capacitance C. Denote the
inductor current and capacitor voltage as iL and vC, respectively.
From Fig. 2, we get the following model:

Cv̇C = −iL − f(vC, iL) + σvC (5a)

Li̇L = vC (5b)

with the definition x = vC and y = εiL, and ε =
√
L/C denot-

ing the characteristic impedance of the LC tank. Furthermore
ω0 =

√
1/LC is the natural frequency of the LC tank. The

right-hand sides of (5a) and (5b) act as instances of the Kirch-
hoff’s current and voltage laws, respectively, and yield the circuit
models in Fig. 2. The nonlinear function f(vC, iL) (which is
different for each oscillator) is a state-dependent current source
that absorbs power f(vC, iL)× vC ≥ 0. By contrast, −σ is
a negative conductance, which produces power v2C × σ ≥ 0.
In summary, f(vC, iL) and σ are single-port dissipative and
nondissipative elements, respectively, and they complete the
circuit representation along with the LC tank. See Appendix B
for a derivation of how the model in (1) follows from (5).

C. Dynamic Model in Polar Coordinates

We now derive polar-coordinate models for the oscillator
dynamics. These will be key to quantify voltage amplitude,
frequency, and other harmonic properties when the oscillator
dynamics are deployed as controllers for the inverters. To derive
the polar coordinates model, we consider the following projec-
tion of states x and y (i.e., vC and εiL):

x = r cos θ, y = r sin θ (6)

where r and θ are the instantaneous amplitude and phase, respec-
tively. Notice that the instantaneous phase is defined without
any anchor to a rotating reference frame. The inverse of the
transformation is given by

r =
√
x2 + y2, θ = tan−1

(y
x

)
.

With these definitions in place, the dynamics of r and θ for
the unforced oscillator dynamics are

ṙ = εω0 (σr cos θ − f(r cos θ, r sin θ)) cos θ (7a)

θ̇ = ω0 − εω0

(
σ cos θ − f(r cos θ, r sin θ)

r

)
sin θ. (7b)
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TABLE II
SUMMARY OF MODELS AND KEY FINDINGS FOR THE NONLINEAR OSCILLATORS

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 04,2023 at 22:21:39 UTC from IEEE Xplore.  Restrictions apply. 



10254 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 37, NO. 9, SEPTEMBER 2022

From the abovementioned equations, we observe that the
oscillation frequency ω = θ̇ is state dependent and distinct from
the natural frequency ω0. However, in the weakly nonlinear
region, ε� 1, we can see that: 1) ṙ � ẋ or ẏ, the amplitude r
evolves slower than states x, y, and 2) the oscillation frequency
ω = θ̇ ≈ ω0. We leverage these observations to obtain a sepa-
rable and autonomous version of the amplitude dynamics via
averaging in Section III.

D. Oscillator Models and Some Takeaways

Having established dynamical models in the Cartesian and
polar coordinates as well as suitable circuit interpretations, we
now examine distinguishing features for each oscillator.

1) Van Der Pol Oscillator: The nonlinearity takes the form
f(x, y) = αx3, where α>0 is a constant. Using (3), we obtain
the damping function in (11). As illustrated in Table II, this
is parabolic and depends only on state x. When x is small,
the nondissipative σ term in (11) dominates and ζ(x, y) < 0
implies negative damping that builds up the states. As x grows
(and breaches the boundary defined by 3αx2 = σ), we obtain
positive damping that opposes further growth. Sincef(x, y)only
depends on x, ∂f/∂y = 0, and ω(x, y) = ω0. The equivalent
circuit of the Van der Pol oscillator is illustrated in Fig. 2(a).
This representation finds frequent mention in the literature as a
motivating example for nonlinear circuits [41].

2) Dead-Zone Oscillator: This oscillator is characterized by
the nonlinearity in (9), where ϕ is a positive constant. The
generalized damping function is given by (3) and illustrated in
Table II. Note that the damping is a discontinuous piece-wise
constant function. In the regime −ϕ ≤ x ≤ ϕ, we have negative
damping such that energy is injected into the LC tank, while
larger values of x are associated with positive damping that
curtails growth. As with the Van der Pol oscillator, ∂f/∂y = 0,
andω(x, y) = ω0. The amplitude dynamics in polar coordinates
are reported in (15). Since f(·, ·) is piece-wise linear, we get
three dynamical-system descriptions over the interval [0, 2π).
The breakpoints θ1, . . . , θ4 are given by

θ1 = cos−1 ϕ

r
, θ2 = π − cos−1 ϕ

r

θ3 = π + cos−1 ϕ

r
, θ4 = 2π − cos−1 ϕ

r
. (34)

[See Fig. 3(b) for an illustration.]
3) Andronov-Hopf Oscillator: This oscillator is character-

ized by the function f(x, y) = α(x2 + y2)x, where α > 0 is
a constant [48]. Compared to the Van der Pol oscillator, the
f(x, y) has an additional αy2x term. The generalized damping
function ζ(x, y) is given in (13) and illustrated in Table II,
from which we observe the function to be a paraboloid. When
trajectories lie outside (inside) the circle with radius

√
σ/α, the

damping is positive (negative, respectively). This generates a
stable limit cycle x2 + y2 = σ/α and in periodic steady state
we get evolution constrained to the surface characterized by
σx− f(x, y) = 0 and ω(x, y) = ω0. Interestingly, we note that
f(·, ·) and ζ(·, ·) collapse to that of the Van der Pol oscillator for
y = 0.

Fig. 3. Trajectories of instantaneous and averaged dynamics in the weakly
nonlinear regime, ε � 1, illustrated for the (a) Van der Pol, (b) dead-zone oscil-
lators, and (c) Andronov-Hopf oscillator. Differences in r and r are exaggerated
for emphasis.

Remark 1: The nonlinear and coupled nature of the oscillator
dynamics (in both the Cartesian and polar forms) preclude the
analytical determination of attributes, such as steady-state equi-
libria, stability of generated limit cycles, higher-order harmonic
content, and oscillation frequency. However, two observations
are particularly useful in this regard: 1) the amplitude and phase
dynamics (7) are 2π periodic in θ; 2) in the weakly nonlin-
ear regime ε� 1, we recognize that (1) should yield nearly
sinusoidal trajectories that evolve with frequency close to ω0.
The combination of these will, in fact, be useful in isolating the
amplitude dynamics and characterizing harmonic content in the
trajectories.

We tackle time-domain performance, steady-state equilibria,
and small-signal stability in Section III by suitably isolating a
tractable model for amplitude dynamics under the supposition
that limit cycles generated in the parametric regime ε� 1 evolve
close to natural frequency ω0. Following this, in Section IV
we characterize harmonics by searching for solutions to (2)
expressed as a series expansion in harmonic terms.

III. AVERAGING ANALYSIS: EQUILIBRIA, STABILITY, AND

DYNAMIC PERFORMANCE

To characterize periodic steady-state equilibria and dynamic
performance, we turn to averaging theory [37]. This approach
uncovers an analytically tractable—albeit approximate—model
for amplitude dynamics from (7a). After a brief overview of
averaging, we analyze the three oscillators individually. In this
section, we first study oscillators with no current feedback (i.e.,
we suppose κi = 0 in Fig. 1). Voltage dynamics under nonzero
current feedback will be studied subsequently in Section V.
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A. Fundamentals of Averaging

We begin with the polar coordinates model for amplitude
in (7a), and average the driving dynamics over one period

ṙ =
1

2π

∫ 2π

θ=0

εω0(σr cos θ − f(r cos θ, r sin θ)) cos θdθ. (35)

Note that the cycle-average amplitude that results from this
model is denoted by r. In the weakly nonlinear regime, ε� 1, it
can be shown that over the timescaleω0t, the error induced by the
averaging approximation |r(t)− r(t)| is O(ε) [37]. Following
the same approach as the ones mentioned above, we average the
phase dynamics in (7b) to obtain

θ̇ =
ω0

2π

∫ 2π

θ=0

1− ε

(
σ cos θ − f(r cos θ, r sin θ)

r

)
sin θdθ.

(36)
For all three oscillators, it happens that the one mentioned

above boils down to θ̇ = ω0. This demonstrates alignment with
the underlying premise of averaging, which is based on the
premise of weakly nonlinear dynamics that oscillates near the
natural frequency. See related discussion as follows (7b).

B. Small-Signal Stability of Equilibria and Rise Time

In what follows, we will show that the averaged amplitude
dynamics for all three oscillators takes the form

ṙ = g(r). (37)

The functions g(r) for the three oscillators are listed in (20)–
(22) (see also, Fig. 3). The derivation for the dead-zone os-
cillator requires additional manipulations given its piece-wise
continuous amplitude vector field (15) (details are reported in
Appendix A). Notably, (37) is autonomous (i.e., there is no de-
pendence on θ) and variable separable (i.e., g(·) does not explic-
itly depend on time). Given the averaged amplitude dynamics,
we focus on steady-state equilibria and dynamic performance.
Since the dynamics of the oscillators are nonlinear, it is important
to get a clear understanding of all possible equilibria that may
result when they are deployed as controllers for inverters. In
this spirit, we isolate all possible equilibria and conclusively
establish that high-voltage and nonzero equilibria in each case
are small-signal stable. Equilibria, req, are obtained from solving
the algebraic constraint g(req) = 0. Small-signal stability of
equilibria is evaluated by considering the linearized dynamics
of Δr := r − req. This takes the form

Δṙ =
∂

∂r
g(r)

∣∣∣∣
r=req

Δr. (38)

The averaged amplitude r is exponentially stable around the
equilibrium point req if and only if ∂g(req)/∂r < 0.

With regard to dynamic performance, we focus on a notion of
rise time trise defined to be the time for the averaged amplitude
to build up from 10% to 90% of req. This can be computed
from (37) as

trise =

∫ 0.9req

r=0.1req

1

g(r)
dr. (39)

The abovementioned limits are chosen without the loss of
generality. In particular, inferences on dynamic performance that
we make subsequently would apply equivalently to other limits
as well.

C. Dynamic Properties of Oscillators

The following analysis establishes equilibria, small-signal
stability, and rise time for each oscillator.

1) Van Der Pol Oscillator: The stationary points of the
averaged amplitude dynamics in (20) reveal equilibria at
0, ±√2σ/3α. The linearized amplitude dynamics around the
equilibrium req can be obtained based on (38) as

Δṙ = εσω0

(
1

2
− 9α

8σ
r2eq

)
Δr (40)

from which it follows that the equilibrium in (23) is small-signal
stable. Finally, applying (39) gives the rise time in (26).

2) Dead-Zone Oscillator: Linearizing the averaged ampli-
tude dynamics in (21) yields

Δṙ = εσω0

(
π

2
− 2 cos−1

(
ϕ

req

))
reqΔr. (41)

Numerically evaluating fixed points of (21) that satisfy the
small-signal stability constraint

π

2
− 2 cos−1

(
ϕ

req

)
< 0

gives the equilibrium amplitude reported in (24). The rise time
for the dead-zone oscillator is given in (27). Note that this com-
putation involves some detailed algebra due to the trigonometric
nonlinearity in the amplitude dynamics. (See Appendix B for
details.)

3) Andronov-Hopf Oscillator: Stationary points of (22) re-
veal equilibria at 0, ±√σ

ακv. The linearized amplitude dynam-
ics are given by

Δṙ = εσω0

(
1

2
− 3α

2σ
r2eq

)
Δr (42)

from which, we can conclude that the equilibrium amplitude
in (25) is small-signal stable. The rise time for this oscillator is
noted in (28).

Remark 2: From (26) to (28), we can conclude that dynamic
performance, captured by rise time, is inversely proportional to
the product εσ for all three oscillators. In what follows, we will
establish that harmonic content is directly proportional to εσ
for the Van der Pol and dead-zone oscillators. This establishes a
tradeoff and precludes selecting arbitrarily large values of ε, σ
in an attempt to prioritize dynamic performance. We formalize
the process of parameter selection in Section V.

IV. PERTURBATION THEORY: ESTIMATING HARMONIC

CONTENT AND OSCILLATION FREQUENCY

We first provide a brief primer on perturbation theory [37],
and in particular, the Poincaré-Lindstedt method. Following this,
we apply the method to estimate third-to-fundamental harmonic
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content and the steady-state oscillation frequency for all three
oscillators.

A. Fundamentals of Perturbation Theory

Consider the second-order oscillator model in (2). Since
ω(x, y) = ω0 in periodic steady state for all three oscillators,
this model simplifies to

ẍ+ 2ζ(x, y)ω0ẋ+ ω2
0 x = 0. (43)

We introduce a new timescale τ = ωeqt to facilitate analysis,
where ωeq is the equilibrium oscillation frequency defined in the
context of (7b) by

ωeq := lim
t→∞ θ̇(t). (44)

Remark 3: We make the distinction between the generalized-
frequency function ω(x, y) in (4), the actual oscillation fre-
quency θ̇ = ω in (7b), the natural frequency of oscillation ω0

and the equilibrium oscillation frequency ωeq, defined in (44). In
particular, the actual frequency of oscillation θ̇ with steady-state
value ωeq (see (31)–(33) for the three oscillators) is not equal to
ω0.

Henceforth, the first- and second-order derivatives of x with
respect to the new timescale τ are denoted by x′ and x′′, respec-
tively. These are defined as

x′ =
dx

dτ
=

dt

dτ

dx

dt
= ω−1

eq ẋ, x′′ = ω−2
eq ẍ. (45)

Then, the system in (43) can be expressed as

ω2
eqx

′′ + 2ζ(x, y)ω0 ωeqx
′ + ω2

0x = 0 (46)

where y(τ) = ω0ω
−1
eq

∫
x(τ)dτ .

The coupled and nonlinear phase-dynamics model in (7b)
lacks a closed-form analytical solution for ωeq. (Recall that
the same was true in the case of the amplitude dynamics, and
we resorted to averaging as a workaround.) In what follows,
we express the equilibrium frequency (with a slight abuse of
notation) as the series

ωeq =

∞∑
k=0

εkωk (47)

where ω0 is the natural frequency [introduced previously in (1)]
and ε = εσ is a small dimensionless scalar.3 Mirroring the series
expansion for equilibrium frequency, we seek solutions to (46)
of the general series-expansion form

x(τ) =

∞∑
k=0

εkxk(τ). (48)

We will utilize a scaled version of the generalized damping
function given by

ζ̂(x, y) =
1

ε
ζ(x, y) (49)

3To see this, consider the circuit representation wherein ε is the characteristic
impedance of the LC tank and σ is a conductance. Therefore, the product,
εσ = ε, is dimensionless.

for developments that follow.
We will adopt a similar series expansion as in (47) and (48)

for ζ̂(x, y), as well as a first-order Taylor-series approximation
around (x0, y0) to facilitate computations4

ζ̂(x, y) =

∞∑
k=0

εk ζ̂k

= ζ̂(x0, y0) + ε

(
x1
∂ζ̂(x0, y0)

∂x
+ y1

∂ζ̂(x0, y0)

∂y

)
.

(50)

Equating coefficients of same order ε yields

ζ̂0 = ζ̂(x0, y0), ζ̂1 = x1
∂ζ̂(x0, y0)

∂x
+ y1

∂ζ̂(x0, y0)

∂y
. (51)

Since ζ̂(x, y) depends only on x for the Van der Pol and dead-
zone oscillators, ∂ζ̂(x, y)/∂y = 0 in (51) for these circuits.

B. Equilibrium Frequency and Harmonic Content

Substituting (47)–(50) into (46) and collecting terms of the
same order ε, we get following expressions up to second order:

O(1) : x′′0 + x0 = 0 (52a)

O(ε) : x′′1 + x1 = −2ω1

ω0
x′′0 − 2 ζ̂0x

′
0 (52b)

O(ε2) : x′′2 + x2 = −2ω1

ω0
x′′1 −

2ω2

ω0
x′′0 −

ω2
1

ω2
0

x′′0

− 2ζ̂0x
′
1 − 2

ω1

ω0
ζ̂0x

′
0 − 2 ζ̂1x

′
0. (52c)

Notice that xk for k = 0, 1, 2 can be solved in a sequential
order-by-order fashion. First, we recognize that (52a) corre-
sponds to the dynamics of a classic unforced second-order har-
monic oscillator with solution expressed as x0 = χ cos τ , where
χ > 0 is a constant that depends on the initial conditions. Next,
note that ω1 = 0. If this were not the case, the solution for (52b)
may contain secular terms of the form τ sin τ and τ cos τ that
grow without bound. This would turn up several contradictions,
e.g., it would violate the small-signal stability of amplitude
equilibria established in Section III. These observations allow
us to simplify (52b) as

x′′1 + x1 = 2 ζ̂0χ sin τ. (53)

With ζ̂0 in hand from (51), the solution of (53) yields x1 and
ζ̂1. The ratio of third-to-fundamental harmonic content in x1 to
χ is denoted by γ3; this is one key harmonic attribute that will be
computed for all three oscillators. Finally, substituting ω1 = 0
in (52c) yields

x′′2 + x2 = 2
ω2

ω0
χ cos τ − 2 ζ̂0x

′
1 − 2 ζ̂1x

′
0. (54)

4We will find that a first-order Taylor-series approximation is sufficient to
approximate equilibrium frequency to second order, and to quantify harmonic
content to third order. Higher-order harmonic analysis would correspondingly
require higher-order Taylor-series expansions.
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Fig. 4. Illustrating functions ζ̂(τ), ζ̂0(τ) and trajectories x(τ), x0(τ) for the:
(a) Van der Pol, (b) dead-zone, (c) Andronov-Hopf oscillators.

While we are not interested in the solution to (54), we can infer
the value of ω2 to eliminate all secular terms in the solution. (In
the case of ω1, the choice was immediately obvious; in this case,
we will have to go through the dynamic models to establish the
choice for each oscillator. We do so in sections that follow.) Once
ω2 is computed, the equilibrium frequency is estimated as

ωeq ≈ ω0 + ε2ω2. (55)

C. Harmonic Properties of Oscillators

We now apply the general developments mentioned above
to compute the third-to-fundamental harmonic ratio γ3 and
equilibrium frequency ωeq for the three oscillators (see Fig. 4
for illustrations of key concepts and signals).

1) Van Der Pol Oscillator: Substitutingx0 = χ cos τ and the
damping function from (11) in (51) yields

ζ̂0 =
1

2

(
3α

σ
χ2 cos2 τ − 1

)
(56)

and (53) boils down to

x′′1 + x1 =

(
3α

4σ
χ2 − 1

)
χ sin τ +

3α

4σ
χ3 sin 3τ . (57)

Notice that the driving terms mentioned above include sin τ
and sin 3τ components. To suppress the secular term propor-
tional to sin τ , we have to pick χ = 2

√
σ/(3α). Notably, this

amplitude is equal to the equilibrium amplitude req obtained
via averaging, as discussed in Section III. With this value of χ,
the solution for (57) is x1 = −1/4

√
σ/(3α) sin 3τ . It follows

from (51) that ζ̂1 = −1/2 sin 3τ cos τ , which when substituted
in (54) gives

x′′2 + x2 = req

((
2ω2

ω0
+

1

8

)
cos τ +

3

8
cos 3τ +

5

8
cos 5τ

)
.

To prevent secular terms, we have to pick ω2 = −1/16ω0,
which when substituted into (55) yields the equilibrium fre-
quency estimate in (31). This line of analysis yields results that
mirror the ones in [39].

2) Dead-Zone Oscillator: Beginning once again with x0 =
χ cos τ and the damping function for the dead-zone oscillator
in (12), it follows that ζ̂0 = 1/2 when x0 > ϕ, and ζ̂0 = −1/2
when x0 < ϕ. This can be expressed as the Fourier series

ζ̂0 = a0 +

∞∑
n=1

a2n cos 2nτ (58)

with even-order coefficients given by

a0 =
2

π
φ− 1

2
, a2n =

2

nπ
sin 2nφ (59)

where φ = cos−1 (ϕχ ) (odd-order terms are zero since the func-
tion is even). With these preliminaries in place, (53) yields

x′′1 + x1 = (2a0 − a2)χ sin τ

+

∞∑
n=1

(a2n − a2(n+1))χ sin((2n+ 1)τ). (60)

To eliminate secular terms, we need 2a0 − a2 = 0. From (59)
and φ = cos−1 ϕ/χ), we get the algebraic constraint

4

π
cos−1

(
ϕ

χ

)
− 1− 4

π
ϕ

√
χ2 − ϕ2

χ2
= 0. (61)

This is identical to the algebraic constraint that yielded the
steady-state averaged amplitude req in (24). The resulting solu-
tion for (60) is

x1 = −
∞∑
n=1

req

4n2 + 4n
(a2n − a2(n+1)) sin((2n+ 1)τ) (62)

from which the value of γ3 in (30) follows. The analysis men-
tioned above reveals that the third-to-fundamental harmonic
content for the Van der Pol and dead-zone oscillators [see (29)
and (30)] is proportional to εσ. Accordingly, a small value for
εσ results in a close to ideal sinusoidal waveform. Note from
Remark 2 that this is in direct contrast to dynamic performance,
highlighting a key design tradeoff.
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Fig. 5. Laboratory setup to validate performance of the nonlinear-oscillator
controlled inverters.

Next, we obtain ζ̂1 leveraging (54). To this end, we first note
from (51) that

ζ̂1 = x1
∂ζ̂0
∂x

= x1
∂ζ̂0
∂τ

∂τ

∂x
= −∂ζ̂0

∂τ

1

req sin τ
.

The term ∂ζ̂0/∂τ can be evaluated from (58). We then obtain

ζ̂1 =
2x1

req sin τ

∞∑
n=1

na2n sin 2nτ. (63)

Substituting ζ̂1 from the abovementioned equation in (54)
yields

x′′2 + x2 =

(
2ω2

ω0
+

∞∑
n=1

(a2n − a2(n+1))
2

4n2 + 4n

)
req cos τ

+ c3req cos 3τ + c5req cos 5τ . (64)

Expressions for c3 and c5 are omitted since they are unneces-
sary in the forthcoming analysis. Secular terms attributed to the
cos τ term are suppressed with the choice

ω2 = −ω0

2

∞∑
n=1

(a2n − a2(n+1))
2

4n2 + 4n
. (65)

The expression for ωeq in (32) results after substituting (65)
into (32) and retaining the first four terms in the Fourier series
(retaining additional terms has minimal impact on the numerical
value). We observe that the steady-state frequency deviation
from nominal ωeq − ω0 is proportional to (εσ)2 for the Van der
Pol and dead-zone oscillators.

3) Andronov-Hopf Oscillator: From the generalized damp-
ing function for the Andronov-Hopf oscillator reported in (13),
and the definition in (49), we get

ζ̂(x, y) =
1

2

(α
σ
(x2 + y2)− 1

)
. (66)

Substituting x0 = χ cos τ and y0 = χ sin τ yields5

ζ̂(x0, y0) = ζ̂0 =
1

2

(α
σ
χ2 − 1

)
. (67)

5For x0 = χ cos τ , it follows that y0 = χ sin τ from equating O(ε0) terms
in the series expansion of y(τ) = ω0ω

−1
eq

∫
x(τ)dτ .

Then, (53) assumes the form

x′′1 + x1 =
(α
σ
χ2 − 1

)
χ sin τ. (68)

The value χ =
√
α/σ suppresses secular terms, and note that

this is identical to the equilibrium of the averaged amplitude
dynamics reported in (25). It follows that x1 and y1 are both
zero, and (51) then suggests ζ̂1 = 0. TheO(ε2) dynamics in (54)
are

x′′2 + x2 = −2ω2

ω0
x′′0. (69)

Secular terms are eliminated forω2 = 0. These findings reveal
that γ3 = 0 and ωeq = ω0 for the Andronov-Hopf oscillator. In
fact, following the same line of reasoning we see that higher-
order terms in the expansion (48) are governed by

x′′n + xn = −2ωn
ω0

x0,
′′ n = 1, 2, . . . . (70)

Secular terms in all higher-order expressions are eliminated
with the choiceωn=xn= 0 ∀n 
= 0. The steady-state frequency
is shown in (33), from which we know that the Andronov-Hopf
oscillator generates harmonics-free oscillations with fundamen-
tal oscillation frequency equal to ω0.

V. DYNAMIC MODELING AND CONTROL DESIGN OF GFM
INVERTERS WITH CURRENT FEEDBACK

In this section, we supplement the generalized mathematical
analysis from prior sections to include current feedback and
control scalings necessary for practical implementation. First,
we establish dynamical models of the inverter terminal voltage
and its frequency. Next, we provide a sketch of how the con-
trol parameters are selected to satisfy the performance criteria.
Accordingly, this section lays the groundwork for controller
implementation of all three oscillators.

A. Terminal-Voltage and Frequency Dynamics

Consider the single-phase hardware implementation in Fig. 1
with dc input voltage vdc, a power stage, and an output filter. As
illustrated in Fig. 1, the oscillator models in (5) and (7) have the
current signal iin extracted from them; this yields the dynamics

ṙ = εω0 (σr cos θ − f(r cos θ, r sin θ)) cos θ

− κiiin
C

cos θ (71a)

θ̇ = ω0 − εω0

(
σ cos θ − f(r cos θ, r sin θ)

r

)
sin θ

− κiiin
C

sin θ. (71b)

With the transformation specified in (6), we can work out the
following expressions for the control voltage signal v, and its
orthogonal counterpart v⊥[

v

v⊥

]
= κv

[
cosφ − sinφ

sinφ cosφ

]
︸ ︷︷ ︸

=:R(φ)

[
r cos θ

r sin θ

]
(72)
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Fig. 6. Validation of analytical results via comparison with simulations for: (a) rise time trise, (b) harmonics γ3, and (c) steady-state frequency ωeq. The operating
point marked in green is indicative of what was implemented in the experiments in Section VI-C.

where R(φ) is a rotation matrix; φ is a user-defined angle
that determines the relationship between voltage amplitude,
frequency, real, and reactive power; and κv is a voltage scaling
factor. The modulation signal is determined as m = v/vdc. The
switch-cycle-averaged terminal voltage, denoted as ṽ in Fig. 1,
tracks v. We subsequently refer to voltage v as the inverter termi-
nal voltage. Since R(φ) only alter the angle but not amplitude,
the RMS inverter voltage amplitude is

V =
κvr√
2

(73)

and it follows V̇ = κvṙ/
√
2. The oscillator input current is

iin = κi(if − i	f ) (74)

where if is the measured current delivered by the switch ter-
minals (see Fig. 1). The signal i	f is a reference signal that
biases inverter operation and is derived from the active and
reactive power setpoints P 	 and Q	, respectively. In particular,
we express P 	 and Q	 as follows:

P 	 = 0.5 (vi	f + v⊥i	⊥), Q	 = 0.5 (v⊥i	f − vi	⊥)

where i	⊥ is the orthogonal signal of i	f . From the abovemen-
tioned discussion, we can isolate

i	f = 2
vP 	 + v⊥Q	

v2 + v2⊥
. (75)

TABLE III
PARAMETERS FOR PERFORMANCE EVALUATION

We denote V and θ as the ac-cycle average of V and θ.
Application of averaging theory yields the following dynamics
for the averaged RMS voltage and phase

V̇ = h(V )− κvκi

2CV
((P − P 	) cosφ+ (Q−Q	) sinφ)

(76a)

θ̇ = ω0 − κvκi

2CV
2 ((P − P 	) sinφ− (Q−Q	) cosφ) (76b)
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Fig. 7. Time-domain simulations and experimental results compared for the Van der Pol oscillator for: (a) ε = εσ = 1/20 and (b) ε = εσ = 1. Top panes:
Simulations of trajectories illustrating convergence to periodic steady state (polar coordinates and time-domain waveforms; polar plots illustrate trajectories for
two initial conditions) and frequency spectra. Middle panes: Corresponding experimental results. Bottom Panes: Terminal voltage startup in experiments.

where h(V ) = κv√
2
g(

√
2 V
κv

) represents the scaled version of av-
eraged oscillator amplitude dynamics [see (37)] while the rest
of the terms in (76a) result from the current feedback signal
iin. Meanwhile, (76b) gives the averaged phase dynamics with
current feedback considered [also see (36)]. A short sketch of
the derivation of the model in (76) is provided in Appendix E.

B. Design Methodology

The crux of the design procedure relies on computing the
equilibria for (76) for a given rotation angle φ. Without the
loss of generality, we focus on the case where φ = π

2 , which
yields tradeoffs between V – Q and ω – P , respectively. This
φ selection is best suited for inductive networks. Finally, we

compute the equilibria of (76)—by setting V̇ = 0, θ̇ = 0—with
real and reactive power setpoints P 	 and Q	 set to zero. In this
case, we obtain

0 = h(V )− κvκi

2CV
Srated, ω = ω0 − κvκi

2CV
2Srated (77)

where ω = θ̇ denotes inverter frequency; Srated is the rated
apparent power. We evaluate voltage and frequency in (76) both
at full load by setting Q = Srated and P = Srated, respectively.
We do so to certify the design for the worst-case condition. We
further denote the nominal voltage rating as Vnom such that the
voltage and current scalings are given by

κv = Vnom, κi =
Vnom
Srated

. (78)

Under full load, the system will exhibit the largest deviations in
steady-state voltage and frequency for all three oscillators. Given
specifications on the maximum allowable voltage and frequency
excursions along with rise-time and third harmonic metrics, this
yields a system of algebraic equations for which the remaining
parameters may be computed. In particular, the specified per-
formance metrics yield an overdetermined system of algebraic
equations where the values of α, ϕ, σ, σ, L, and C can be
computed. A range of parameters that satisfy all performance
requirements exist for most practical performance requirements.
The interested reader can refer to [14] and [44] for established
methods of designing the Van der Pol [49] and Andronov-Hopf
oscillators, respectively, whereas the expressions in Table II can
be applied for the dead-zone oscillator.

VI. NUMERICAL SIMULATIONS AND EXPERIMENTS

Numerical-model simulations and hardware experiments in
this section focus on substantiating our prior analytical models.
In particular, simulations are used to assess the validity of the
derived performance metrics over a wide range of conditions
for each oscillator, whereas experimental validations illustrate
robust performance in practical implementations.

A. Implementation

To validate the analytical developments outlined thus far,
we built a laboratory-scale experimental platform, as shown
in Fig. 5. Inverter hardware corresponds to the configuration
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Fig. 8. Time-domain simulations and experimental results compared for the dead-zone oscillator for: (a) ε = εσ = 1/20 and (b) ε = εσ = 1. Top panes:
Simulations of trajectories illustrating convergence to periodic steady state (polar coordinates and time-domain waveforms; polar plots illustrate trajectories for
two initial conditions) and frequency spectra. Middle panes: Corresponding experimental results. Bottom Panes: Terminal voltage startup in experiments.

in Fig. 1. An H-bridge inverter unit delivers power to the ac
side through an LCL filter with inverter-side inductance L1,
capacitance Cf , and load-side inductance L2. Both switching
and sampling frequencies are set as fsw = fsam = 10 kHz. Texas
Instruments TMS320F28379D digital signal processors execute
the discretized nonlinear oscillator dynamics. The controller
dynamics from (1) with current feedback are discretized with
Tustin’s method using a time step equal to the switching period
Tsw = 10−4 s.

B. Performance Evaluation

The first experiments are designed to verify the output charac-
teristics of three nonlinear oscillators without current feedback.
Parameters to realize the oscillator dynamics are adopted from
Table III. The rise time trise, third-to-fundamental harmonics γ3,
and equilibrium frequency ωeq are three main indices we focus
on. In each experiment, we determine the σ/α ratio and ϕ value
to guarantee oscillator amplitude req =

√
2 [see (23)–(25)].

The values of L and C are tuned to obtain different values
of ε while ensuring the frequency ω0 = 1/

√
LC = 2π60 rd/s.

Fig. 6 illustrates analytically calculated and numerically eval-
uated values of rise time trise, third-to-fundamental harmonics
γ3, and steady-state frequency ωeq for the Van der Pol, dead-
zone, and Andronov-Hopf oscillators. Numerical simulations
are performed for ε = εσ = 1/20, 1/10, 1/5, 1/2, 1 and are
able to capture full-order nonlinear dynamics with high fidelity.
The simulations closely match the analytically computed results

(refer to Table II) across the full range of εσ values considered,
thus substantiating our proposed models. Reflecting on the
waveforms for all three oscillators in Fig. 6(a), it is clear that
rise time is inversely proportional to ε, while Fig. 6(b) shows
that harmonic content is directly proportional to ε. It is also clear
that the Van der Pol and dead-zone oscillators exhibit a tradeoff
between rise time and harmonics (as was also established in the
analytical derivations). In contrast, such a tradeoff is absent for
the Andronov-Hopf oscillator.

Figs. 7–9 illustrate analytically computed and experimentally
generated trajectories and frequency spectra for the three os-
cillators under disparate values of ε. Capacitor voltage vf and
grid-side current ig are plotted in the figures. Results are shown
in Table IV. Overall, we observe a close match between analyt-
ical calculations and experiments. Modest mismatches between
simulation and experiment appear for γ3 when ε is small. This
is because the distortion originating from the oscillator itself
is sufficiently small that nonidealities from PWM switching
dominate the hardware measurement of γ3.

C. Inverter-Based System With GFM Control

To highlight a practical use case, we next consider an experi-
ment consisting of three inverters programmed with Andronov-
Hopf oscillators, two loads, and a three-bus network with line
impedances, shown in Fig. 10. The dc voltage sources are im-
plemented with regenerative power supplies that enable the in-
verters to source and sink power. The controllers are designed to
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Fig. 9. Time-domain simulations and experimental results compared for the Andronov-Hopf oscillator for: (a) ε = εσ = 1/20 and (b) ε = εσ = 1. Top panes:
Simulations of trajectories illustrating convergence to periodic steady state (polar coordinates and time-domain waveforms; polar plots illustrate trajectories for
two initial conditions) and frequency spectra. Middle panes: Corresponding experimental results. Bottom Panes: Terminal voltage startup in experiments.

Fig. 10. GFM application with Andronov-Hopf oscillator controller.

ensure a nominal 80 Vrms voltage at 60 Hz, 5 % voltage deviation
across the full load range, no more than 2 % of third-harmonic
content, and less than 50 ms rise-time. Substituting (78) in (77),
substituting h(V ) = κv√

2
g(

√
2 V
κv

) with g(·) given in (22), and
solving for the roots of voltage equilibria from the algebraic
equation that results, we can write the equilibrium voltage and
frequency deviation as

V eq =
Vnom√

2

√
1 +

√
1− 4

σ
, Δω =

V 2
nom

V 2
eq

1

2C
(79)

where Vnom = κv
√
σ/2α. From (25), we select σ/α = 2 to

achieve an oscillator RMS amplitude of one.
From (79), it follows that

σ =
V 4

nom

V 2
min(V

2
nom − V 2

min)
, ε ≤ 2

|Δω|max

ω0

V 2
min

V 2
nom

where C = 1/(εω0). Moreover, the rise time boundary

trise =
6

εσω0
≤ trise,max

leads to an additional constraint εσ ≥ 6/(trise,maxω0). Parame-
ters that satisfy these constraints are in Table V. The selected
ε = εσ for the experiments is marked in green in Fig. 6.
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TABLE IV
MEASURED AND SIMULATED PERFORMANCE METRICS

TABLE V
SYSTEM PARAMETERS WITH CURRENT FEEDBACK

Each inverter also has a distinct set of real power commands,
denoted as P1, P2, and P3 that we modulate to illustrate ad-
justable power sharing among the three inverters. Fig. 10 illus-
trates the experimental setup. We begin with no loads connected
to the system (i.e., S1 and S2 are open). Initially, P1 is set to
a negative value while both P2 and P3 are fixed at zero. Given
the absence of load power, inverters #2 and #3 deliver power
which is then absorbed by inverter #1. Subsequently, P1 is

Fig. 11. Interconnected without load, S1 and S2 are open: i) P �
1 = −200W,

# 2 and # 3 inverters deliver power to # 1 inverter and ii) P �
1 = 0W.

Fig. 12. Supplying Load1 only: S1 closed and S2 open.

Fig. 13. Supplying Load1 and Load2: S1 and S2 closed andPload2 = 1
2Pload1.

brought back to zero and each inverter delivers zero current.
This highlights how the control accommodates bidirectional
power flow. Next, Figs. 12 and 13 show the measured waveforms
when the inverters deliver power into one and then both loads,
respectively, when P1, P2, and P3 are all fixed at zero. Here, the
uniform power setpoints give near-equal power sharing. Finally,
Fig. 14 illustrates nonuniform power sharing afterP1 is adjusted
once again to a negative value.
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Fig. 14. Decrease load 2: Pload2 = 1
4Pload1 and P �

1 = −200W.

VII. CONCLUSION

This article established a generic modeling framework to
characterize the properties of second-order nonlinear circuits
composed of a harmonic oscillator and state-dependent damp-
ing. Averaging analysis uncovered amplitude dynamics and
perturbation theory allowed us to characterize steady-state fre-
quency and harmonics. These methods were applied to Van der
Pol, dead-zone, and Andronov-Hopf oscillators, which exhibit
a wide array of properties and served to illustrate the generality
of our approach. Further analysis is used to characterize system
dynamics in the presence of an output load and additional para-
metric scalings needed for implementation. These additional
results inform a design process needed for practical hardware
applications. After computing the key properties of these oscil-
lators, their models were validated numerically and in a variety
of experiments. Extending the complete analytical framework
on harmonics, rise time, and small-signal stability to include
loads and network interactions while acknowledging current
feedback is an important direction for future work. Furthermore,
extending the stability analysis to large-signal methods, and
perturbation analysis to higher-order terms would provide more
accurate and comprehensive insights on dynamic and harmonic
properties.

APPENDIX

A. Derivation of (3) and (4)

Rewriting (1) in second-order form yields

ẍ+ εω0

(
ḟ(x, y)− σẋ

)
+ ω2

0x = 0. (80)

We expand the derivative ḟ(x, y) as follows:

ḟ(x, y) =
∂f

∂x
ẋ+

∂f

∂y
ẏ

=
∂f

∂x
ẋ+

∂f

∂y
ω0x =

∂f

∂x
ẋ+

∂f

∂y

x

y
ω0y

=
∂f

∂x
ẋ+

∂f

∂y

x

y
(εω0(σx− f(x, y))− ẋ)

=

(
∂f

∂x
− ∂f

∂y

x

y

)
ẋ+

∂f

∂y

εω0(σx− f(x, y))

y
x.

Substituting ḟ(x, y) to (80) yields

ẍ+ 2
ε

2

(
∂f

∂x
− ∂f

∂y

x

y
− σ

)
︸ ︷︷ ︸

=ζ(x,y)

ω0ẋ

+ ω2
0

(
1 + ε2

σx− f(x, y)

y

∂f

∂y

)
︸ ︷︷ ︸

=ω2(x,y)

x = 0

which matches (2) with ζ(x, y) and ω(x, y) listed in (3) and (4),
respectively.

B. Derivation of (1) from (5)

From Fig. 1, we give the LC resonant circuit dynamics as
[also see (5)]

Cv̇C = −iL − f(vC, iL) + σvC

Li̇L = vC

where vC and iL are circuit states. Recalling the definitions as
follows:

ε :=

√
L

C
, ω0 :=

√
1

LC

we know C = 1/(εω0) and L = ε/ω0. Substituting C and L
expressions to circuit dynamics mentioned above yields

v̇C = −εω0iL − εω0f(vC, iL) + εω0σvC

εi̇L = ω0vC.

We select system states as x = vC and y = εiL, and obtain
the following standard dynamics in (1) as

ẋ = εω0(σx− f(x, y))− ω0y

ẏ = ω0x.

C. Dead-Zone Oscillator Averaged Amplitude Dynamics

For r < ϕ, we have from (15) that

ṙ =

∫ 2π

θ=0

εω0σr cos
2 θdθ =

εω0σ

2
r. (81)

For r ≥ ϕ, the averaged amplitude dynamics are given by

ṙ =
1

2π

(∫ θ2

θ1

ṙdθ +

∫ θ3

θ2

ṙdθ +

∫ θ4

θ3

ṙdθ +

∫ θ1

θ4

ṙdθ

)
(82)

where θ1, . . . , θ4 take the form in (34). The integrands follow
from (15). Trigonometric and algebraic manipulations to sim-
plify (82) combined with (81) yield the averaged amplitude
dynamics reported in (21).

D. Dead-Zone Oscillator Rise Time

The calculation for the rise time has to be carried out by
breaking up the pertinent integrals over intervals where averaged
amplitude dynamics are continuous. From the definition for rise
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time in (39), we have

trise =

∫ ϕ

0.1req

2

εσω0

1

r
dr

+

∫ 0.9req

ϕ

π

2εσω0

1

[ϕr

√
r2 − ϕ2 + (π4 − arccos ϕr )r]

dr

≈ 6.84

εσω0
.

E. Derivation of Polar Dynamics in (76)

Recalling voltages v and v⊥ in (72), we get

v = κvr cosψ, v⊥ = κvr sinψ

where the phase angle of voltage v is ψ = θ + φ. Leveraging
the relationship V = κvr/

√
2 in (73), we know

V =
1

2π

∫ 2π

0

κv√
2
rdθ

and averaging the dynamics (71) over one ac cycle yields

V̇ = h(V )− 1

2π

∫ 2π

θ=0

κviin√
2C

cos θdθ

θ̇ = ω0 − 1

2π

∫ 2π

θ=0

κviin√
2C

sin θdθ

where the function h(·) relates to (37), which represents the
oscillator dynamics without current feedback. Consider the fol-
lowing series of steps for simplifying the integral term in the
averaged-voltage dynamics

1

2π

∫ 2π

θ=0

iin cos θdθ =
1

2π

∫ 2π

θ=0

1

V
V iin cos θdθ

=
1

2π

∫ 2π+φ

ψ=φ

1

V
V iin cos (ψ − φ)dψ

=
1

2π

∫ 2π+φ

ψ=φ

1

V
V iin(cosψ cosφ+ sinψ sinφ)dψ

=
1

2π

∫ 2π+φ

ψ=φ

1

V
(viin cosφ+ v⊥iin sinφ) dψ

=
κi
2π

∫ 2π+φ

ψ=φ

1

V
(v(if − i	f ) cosφ+ v⊥(if − i	f ) sinφ) dψ

=
κi
V

((P − P 	) cosφ+ (Q−Q	) sinφ) .

In the steps mentioned above, we have utilized (72)–(75),
the following definitions for the instantaneous real and reactive
power outputs of the inverter

P =
1

2π

∫ 2π+φ

ψ=φ

vifdψ, Q =
1

2π

∫ 2π+φ

ψ=φ

v⊥ifdψ

and the fact that

1

2π

∫ 2π+φ

ψ=φ

vi	f dψ =
1

2π

∫ 2π+φ

ψ=φ

v
vP 	 + v⊥Q	

V 2
dψ

=
1

2π

∫ 2π+φ

ψ=φ

2P 	 cos2 ψ + 2Q	 cosψ sinψdψ = P 	

and

1

2π

∫ 2π+φ

ψ=φ

v⊥i	f dψ =
1

2π

∫ 2π+φ

ψ=φ

v⊥
vP 	 + v⊥Q	

V 2
dψ

=
1

2π

∫ 2π+φ

ψ=φ

2P 	 cosψ sinψ + 2Q	 sin2 ψdψ = Q	.

As mentioned above, we have leveraged the definition (75),
and the identities 1/2π

∫ 2π

0 cos2 ψdψ = 1/2π
∫ 2π

0 sin2 ψdψ =

1/2 and
∫ 2π

0 cosψ sinψdψ = 0. The integral term in the
averaged-phase dynamics simplifies similarly.

F. Derivation of (79)

Referring to (22), we obtain the h(V ) as

h(V ) =
κv√
2
g

(√
2 V

κv

)
=
σV

2C

(
1− V

2

V 2
nom

)
where Vnom = κv

√
σ
2α . Then, (77) becomes

0 = σV
2

(
1− V

2

V 2
nom

)
− κvκiSrated.

Substituting κv and κi from (78) into the expression men-
tioned above yields

0 = V
4 − V 2

nomV
2
+
V 4

nom

σ
.

Solving for Veq gives (79).
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