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Abstract—Modular architectures that consist of several
series-connected dc–ac converters have been a focal point of recent
innovations in transformerless medium-voltage applications. In
this article, we consider an architecture consisting of dc–ac modules
containing a quadruple active bridge dc–dc converter, which gen-
erates three floating dc links that feed grid-side dc–ac inverters.
Practical implementation of such a converter module in photo-
voltaic systems requires a variety of controllers that collectively
achieve maximum power point tracking, dc-link regulation, and
ac-side power control. Design of such multiloop systems is generally
quite challenging due to the potential for destabilizing interactions
among loops. Here, we propose a design approach where singular
perturbation theory is used to decompose the timescales at which
each control loop operates and provides a systematic framework for
parametric selection. Our approach also ensures system stability of
multiple modules with identical controls connected in series across
a grid. This article concludes with experimental results of three
1000-W series-connected converter modules across a stiff grid.

Index Terms—Cascaded converters, control design, grid-
forming, modular inverters, singular perturbation, stability.

I. INTRODUCTION

R ECENT advances in medium-voltage power electron-
ics have pushed renewable energy applications toward

transformerless configurations. In this setting, cascaded power

Manuscript received 18 April 2022; revised 10 August 2022; accepted 28
October 2022. Date of publication 10 November 2022; date of current version
14 February 2023. This work was supported by the U.S. Department of Energy
Office, Energy Efficiency and Renewable Energy Solar Energy Technologies
Office, under Grant DE-EE0008346. This work was authored in part by Al-
liance for Sustainable Energy, LLC, the manager and operator of the National
Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under
Contract DE-AC36-08GO28308. The work of Brian Johnson was supported by
National Science Foundation CAREER under Award 2143222. Recommended
for publication by Associate Editor F. Khan. (Corresponding author: Rahul
Mallik.)

Rahul Mallik, Soham Dutta, and Brian Johnson are with the Chandra Depart-
ment of Electrical and Computer Engineering, Cockrell School of Engineering,
University of Texas, Austin, TX 78712 USA (e-mail: rmallik@utexas.edu;
sdutta@utexas.edu; b.johnson@utexas.edu).
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stages are commonly used to distribute voltage stress across mul-
tiple circuits. However, the presence of many series-connected
converters compounds the difficulties associated with control
design. In this article, we focus on photovoltaic (PV) applica-
tions where modular converters have a PV string on the dc input
and the ac sides of all converters are series-connected across a
medium-voltage system. Each converter module features its own
dedicated controls to perform maximum power point tracking
(MPPT), dc-link regulation, and ac-side grid-forming controls.
The primary focus of the ensuing analysis is to propose a
systematic framework to design the multiple control loops that
exist within each converter. Our approach leverages singular
perturbation theory to uncover the distinct timescales that each
subsystem operates at and provides a design methodology that is
broadly applicable to modular converter structures for medium-
voltage settings.

As modular power electronics find greater interest, there is an
accompanying evolution from centralized control architectures
to distributed and ultimately toward fully decentralized.
Focusing on cascaded topologies, such as modular multilevel
converters [1] and cascaded H-bridges [2], [3], centralized con-
trollers have been traditionally used to regulate voltages, power,
and frequency across the system. As module counts increase,
wiring between the growing number of power stages and central-
ized controller will eventually become untenable. Centralized
controllers also suffer from a higher computational burden and
introduce a single point-of-failure. Decentralized controllers [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18] overcome these difficulties by using module-level
control laws that achieve system-level objectives through their
inherent electrical coupling. However, decentralization with
homogeneous [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15] and heterogeneous [16], [17], [18] controllers has
focused solely on ac-side synchronization and power sharing.
Heterogeneous controllers [16], [17], [18] commonly use a
centralized phase-locked-loop (PLL). Homogeneous controllers
for cascaded converters have been applied in systems with
passive loads [6], [10]. Grid-connected cascaded architectures
in [4], [5], [7], [11], [12], and [13] mainly focus on equal power
sharing across all modules. Although unequal power sharing is
shown experimentally in [9], [14], and [15], analytical stability
guarantees are lacking [19]. Moreover, existing works [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]
focus exclusively on the series-connected ac-side converter stack
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dynamics and lack comprehensive solutions that merge ac- and
dc-side control functions under a unified framework. Toward
that end, we propose, analyze, and design a cascaded converter
system where each module has a multistage dc front-end that
entails multiple control loops that are fully integrated with ac-
side functions. We also derive analytical stability conditions for
unequal power sharing in grid-connected cascaded converters.

Multistage converters are typically controlled with multi-
ple control loops in a nested structure. Multiloop controller
design is conventionally tackled by deliberately decomposing
the system into faster inner and slower outer control loops.
This design principle is applicable to dc–dc converters [20]
and dc–ac converters [21], [22], [23], and extends further into
system-level secondary and tertiary controllers for system-wide
regulation [24]. Note that prior works are predominantly focused
on dynamics within a single converter, whereas secondary con-
trollers generally act on slowly varying aggregate models that
lack converter-level dynamics. Accordingly, such approaches
are insufficient for use in cascaded converter systems with tight
coupling at fast timescales.

To address these issues and yield an approach suitable to
series-connected modules with upstream power stages, we
use singular perturbation methods to systematically identify
timescales and formulate a comprehensive controller design. In
particular, the converter system is broken up into subsystems
whose dynamical equations are transformed into coordinates
that automatically induce a timescale separation with fast and
slow dynamics [25], [26]. In the proposed architecture, fast
dynamics within a particular subsystem are used to generate
the reference signal, which is subsequently fed to the next
fastest subsystem. This yields a systematic approach for stitch-
ing together a chain of dynamical subsystems that form the
overall system. Our approach guarantees stability by ensuring
that the reference generated by a given subsystem is slower
than the fastest timescale of the receiving subsystem in the
chain [27, Section 11.3]. With regards to our application, this
ensures that MPPT, dc-link regulation, and ac-side functions are
systematically partitioned and do not conflict. This is unlike
classical approaches that typically neglect the fast dynamics
of the upstream reference-generating subsystem in a multiloop
structure. On that note, our approach incorporates a richer set of
dynamics and offers design guidelines that guarantee stability,
which generally do not appear in classical approaches.

Singular perturbation analysis is applied in [28] and [29]
to model a grid-following inverter with its inner voltage and
current loops, PLL, and filter dynamics. Similar work for
grid-forming inverters [28], [30], [31], synchronous machine-
dominated power systems [32], [33], and dc–dc converters [34]
has also been reported. High-fidelity reduced-order models [28],
[34], [35] and analytical stability conditions [22], [29], [30], [36]
for single-stage inverter-based parallel-connected inverters have
been the main focus of prior literature. In contrast, our work
focuses on series-connected ac systems where we study multi-
stage converters comprising nested multiloop controls. The only
existing work that uses singular perturbation in the context of
series-connected systems [19] focuses on single-stage cascaded
converters across a passive load. In contrast, we analyze the
grid-connected operation of multistage PV-powered converters.

Despite the fact that the framework in this article is applicable
to any system topology composed of several identical multistage
converters with ac-side series connections, we focus on the
particular setup in Fig. 1. This circuit configuration interfaces
a multitude of low-voltage PV strings to a medium-voltage
grid [37]. In such a system, the power produced by each PV
string is processed by active-bridge converters and pumped into
the ac-side interconnection through an inverter. As evident in
Fig. 1, this system entails a collection of control loops that must
be carefully designed. The main contributions of this article are
the following.

1) We establish a control design framework that rigorously
ensures the stability of complex multistage converter sys-
tems with nested and coupled control loops.

2) A systematic procedure is put forward where each stage
and its controls are decomposed into slow and fast
timescales, and the fast modes reveal additional design
insights compared to established methods that rely on
basic reduced-order models.

3) A novel modeling approach translates the nonlinear PV
voltage–current curve and input dc-link dynamics into the
singular perturbation design framework.

4) Experimental results on a prototype consisting of three
modules validate decentralized homogeneous controllers
for multistage converters with PV generation and series
connections on the ac grid side.

This article is structured as follows. Section II provides the-
oretical background material. Next, Section III describes the
dynamics associated with the physical circuitry and control
loops within each converter. Control design is covered in Sec-
tion IV, and we conclude with experimental results in Section V.
Section VI concludes this article.

II. THEORETICAL BACKGROUND

In this section, we present the necessary theoretical and math-
ematical background that will be harnessed in later sections.

A. Singular Perturbation Approach

Consider the nonlinear dynamical system

ẏ = f(y), y ∈ R
n+m. (1)

Assume the preceding system can be decomposed [38] into the
two dynamic expressions

ẋ = f(x, z, ε), x(t0) = x0, x ∈ R
n, (2)

εż = g(x, z, ε), z(t0) = z0, z ∈ R
m, (3)

where ε � 1 is known as the perturbation parameter. Since ε
is small, (3) captures fast dynamics. Using the approximation
ε = 0 yields 0 = g(x, z, 0), which can be solved to obtain
z = h(x). We substitute this into (2) to obtain the reduced-
order system ẋ = f(x, h(x), 0) with n states whose solution,
denoted as x̄, captures slow system states. We will refer to this
model interchangeably as either the reduced-order or slow-mode
model. x̄ closely approximates the actual solution x such that
x− x̄ = O(ε).

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 04,2023 at 22:02:06 UTC from IEEE Xplore.  Restrictions apply. 



4308 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 38, NO. 4, APRIL 2023

Fig. 1. Multiple converter modules are connected in series across the grid. Each converter module contains three isolated active bridges that each has an output
single-phase inverter that transfers power to an ac grid. The various control loops within each converter block are illustrated. This system facilitates efficient power
delivery directly into a medium voltage grid.

To gain deeper insights, we now characterize the er-
ror between the actual solution z(t) and its approximation
z̄(t) = h(x̄(t)). Unlike the slow variable, x, the fast variable
z does not have error bounded by O(ε). In particular, z − z̄ is
equal to �z +O(ε), where �z evolves as

∂�z
∂τ

= g (x(t0), z̄(t0) + �z(τ), 0) , (4)

where τ = t/ε is the fast timescale and intuitively �z captures
the error in excess of O(ε). To ensure the original model in (1)
as well as the reduced system ẋ = f(x, h(x), 0) are stable, it is
necessary to first ensure the fast dynamics in �z are also stable.
The conditions [38, Th. 3.1] for stable dynamics in (4) are as
follows.

1) The equilibrium �z = 0 of (4) is asymptotically stable
for any initial condition and z(t0)− z̄(t0) belongs to its
domain of attraction.

2) The eigenvalues of ∂g/∂z evaluated for ε = 0 along x̄ and
z̄ should have sufficiently negative real parts.

In the ensuing analysis, we will show that these conditions
reveal additional guidelines that facilitate the design of nested
multiloop systems.

B. Reference Frame Transformations

Consider the balanced three-phase time-domain signals

xa(t) = X cos(θ),

xb(t) = X cos

�
θ − 2π

3

�
,

xc(t) = X cos

�
θ − 4π

3

�
,

where X , θ, and ω denote the amplitude, instantaneous an-
gle, and angular frequency of the time-domain phasor x(t) =
Xejθ(t), respectively. These waveforms can be projected onto a
rotating pair of orthogonal d and q axes using Park’s transfor-
mation as follows:
�
xd

xq

�

=
2

3

�
cos θ′ cos

�
θ′ − 2π

3

�
cos
�
θ′ − 4π

3

�

− sin θ′ − sin
�
θ′ − 2π

3

� − sin
�
θ′ − 4π

3

�

�

	 
� �
Γ(θ′(t))




��
xa

xb

xc

�

�� ,

where θ′(t) =
� t

0 ωdσ defines the instantaneous angle of the
frame rotating with frequency ω. The components of x(t) pro-
jected onto the axes are denoted as xd and xq . In the special
case θ′(t) = θ(t), we obtain xd = X,xq = 0. All angles are
initialized to zero.

III. SYSTEM MODELING

As illustrated in Fig. 1, the overall system is composed of
N series-connected blocks that have an identical internal struc-
ture and are equally rated for apparent power Srated. Given the
modular structure of the system, we will delineate the detailed
structure of the k-th converter within the stack. As shown, each
module has a PV-powered dc input with capacitance Cpv that
subsequently feeds a set of three dual active bridge (DAB)
converters with a common primary-side bridge. The primary-
bridge output connects to three parallel inductances L that then
feed into the respective transformer primary input. Since there
are four active bridges within this portion of the system, we
refer to this conglomeration as a quadruple active bridge (QAB)
converter. Each of the three QAB outputs yields a floating dc
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link with capacitance Cdc that connects to a dc–ac inverter for
grid integration. The three floating dc links and their respective
inverters accommodate power transfer into a three-phase grid.
The main purpose of the QAB is to provide isolation between
the PV input and the floating ac terminals such that ac-side series
interconnections are facilitated.

The QAB converter, which lies at the center of each converter
module, acts as the intermediary between the PV input and three-
phase ac outputs. From a controls perspective, we will design the
closed-loop QAB system to ensure that each DAB behaves as
a dc transformer (DCX), where the three floating dc links track
the input voltage after scaling by turns ratio n. Eventually, we
will show how the three DCXs, which comprise the QAB, are
designed with sufficiently high tracking bandwidth such that the
QAB structure is dynamically transparent to the PV- and ac-side
controls. Once DCX operation is ensured, the rest of the system
closely mirrors a conventional three-phase solar inverter. In
particular, for thek-th module, the PV-side implements an MPPT
whose commanded PV voltage v�pv,k is realized by modulating
the commanded ac power. As shown in Fig. 1, the ac-side power
reference emanates from the PV dc-link regulator and the set
of three inverter H-bridges is controlled by dispatchable Virtual
Oscillator Control (dVOC). From the viewpoint at the module
level, the closed-loop dVOC [22] modulates the ac terminals
to behave as a controllable ac-side power source. The dVOC
dynamics across the stack serve the additional purpose of giving
communication-free grid synchronization and power (i.e., volt-
age) sharing. Having said that, the proposed design approach is
equally applicable to any other grid-forming technique, such as
conventional droop [39] or virtual synchronous machines [40].

A. QAB With Floating DC Links

The primary-side bridge is common to each of the three
floating secondary bridges. All four bridges are modulated to
produce an ac voltage waveform with 50% duty ratio, and the
primary-side bridge acts as an angular reference to the remaining
three others. Accordingly, the phase shifts of the secondary
bridge waveforms relative to the primary side will act as our
control signal for dc-link voltage regulation. In particular, we
denote the phase shift of the secondary DAB bridge associated
with the j-th ac phase within the k-th module as ϕj

k, where
j ∈ {a, b, c}. The voltage across each of the floating dc links
evolves as [41]

Cdc

dvjdc,k

dt
=

vpv,k

nLωsw
ϕj
k

�

1− ϕj
k

π

�

− P j
k

vjdc,k

, (5)

where ωsw is the DAB switching frequency in rad/s, ϕj
k is the

phase shift of each secondary bridge with respect to the primary,
and vpv,k is the dc voltage across the PV input. P j

k denotes the
power transferred from the primary to the j-th secondary.

A proportional–integral (PI) controller ensures DCX opera-
tion such that the dc voltage across Cdc tracks nvpv. This gives
the following control law:

ϕj
k=kp,dc

�
nvpv,k − vjdc,k

�
+Cdcki,dc

� �
nvpv,k − vjdc,k

�
dt

(6)

This controller is replicated across the three dc links, where
j ∈ {a, b, c}. The proportional and integral gains are denoted as
kp,dc and ki,dc, respectively.

The power P j
k extracted from each dc link and transferred

to its corresponding ac terminals takes the form of a nonlinear
time-varying double-frequency pulsating waveform. Assuming
sinusoidal steady-state conditions on the ac side, each power
contribution in (5) is

P a
k = Vk cos(θk) I cos(θi),

P b
k = Vk cos

�
θk − 2π

3

�
I cos

�
θi − 2π

3

�
,

P c
k = Vk cos

�
θk +

2π

3

�
I cos

�
θi +

2π

3

�
,

where I and Vk are the peak ac current and output voltage at
the ac terminals of the k-th converter, respectively, and θi is the
phase angle between the current and global reference frames.
The controls that dictate ac-side waveforms will be described in
the next section.

To obtain a model that does not contain time-varying nonlin-
earities, we sum the dynamical equations in (5) for all the three
phases to obtain the following lumped model:

�

j

Cdc

dvjdc,k

dt
=
�

j

vpv,k

nLωsw
ϕj
k

�

1− ϕj
k

π

�

−
�

j

P j
k

vjdc,k

Total module-level ac-side power, denoted asPk , under balanced
operation is

Pk =
�

j

P j
k = P a

k + P b
k + P c

k =
3

2
Vkid, (7)

where id is the first component of idq = [id, iq]
� = Γdq(δk)i

and i = [ia, ib, ic]
� is a vector of the three-phase currents. In

subsequent analysis, we will show that the relative frame angle
of the k-th module δk is generated by its ac-side controller.

Within a given module, we assume that the floating dc-link
voltage for each phase vjdc,k is approximately equal to its steady-
state value v0dc,k. This approximation can further be substanti-
ated using the linearization methods in [42]. Furthermore, each
DAB is assumed to operate with small phase shifts such that
(ϕj

k)
2 is negligibly small [43]. Taken together, these modeling

constructs allow us to convert the dynamics in (5) into the
simplified model given by

Cdc

dvjdc,k

dt
=

vpv,k

nLωsw
ϕj
k − P j

k

vdc
0
k

.

Furthermore, since Pk does not depend on time [see (7)], we
can simplify the lumped model as

Cdc
dvdc,k

dt
=

vpv,k

nLωsw
ϕk − Pk

3vdc
0
k

, (8)

where lumped variables vdc,k and ϕk are defined as

vdc,k =
1

3

�

j

vjdc,k, ϕk =
1

3

�

j

ϕj
k.
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Fig. 2. AC-side phasor model of N series-connected modules across the grid
and an output filter. The amplitude and angle of each set of ac terminals is
modulated by an independent dVOC loop.

B. AC-Side Dynamics

The three-phase grid voltages take the form



��
vag
vbg
vcg

�

�� =




��
Vg cos(θg)

Vg cos
�
θg − 2π

3

�

Vg cos
�
θg − 4π

3

�

�

�� , (9)

where Vg is the nominal peak grid voltage and θg =
� t

0 ωgdσ
is the instantaneous grid angle. We assume the grid provides a
stiff voltage across an output RL filter and N series-connected
modules.

Each set of module-level three-phase H-bridges is modulated
with the dVOC [22], [44] dynamics given by

V̇k = μVk

��
Vg

N

�2

− V 2
k

�

− 2η

3Vk
(Qk −Q�

k), (10)

θ̇k = ωk = ω0 − 2η

3V 2
k

(Pk − P �
k ), (11)

where μ and η are control gains, and ω0 is the nominal grid
frequency. The peak voltage generated by each single phase in-
verter is denoted as Vk, and the three-phase waveforms are in the
vector vk = [vak, v

b
k , v

c
k]

�. Active and reactive powers delivered
by the k-th module are represented as Pk and Qk, respectively.
Similarly, P �

k and Q�
k denote the corresponding references for

active and reactive powers, respectively. In subsequent analysis,
we will show that P �

k is generated by an upstream control
loop, whereas Q�

k will be assumed constant. The characteristic
nonlinear droop offered by dVOC ensures a coupling between
active power and frequency, which, in turn, gives decentralized
power sharing and synchronization. The ac-side phasor model
is summarized in Fig. 2, where Zf =

�
R2

f + (Lfω0)2 and
φf = tan−1(Lfω0/Rf) capture the line impedance amplitude
and its angle, respectively.

Setting the derivatives in (10)–(11) to zero, we evaluate the
largest deviations in steady-state voltage and frequency as Pk

andQk reach their maximal value ofSrated. The largest deviation
in steady-state voltage and frequency around the nominal values
of Vg/N and ω0, respectively, are denoted as ΔV and Δω,
respectively. It can be shown [44] that the oscillator gains are
related to the voltage and frequency tradeoffs as follows:

η ≤
3Δω

�
Vg
N −ΔV

�2

2Srated
, (12)

μ ≥ Δω

ΔV
�
2
Vg
N −ΔV

� (13)

To facilitate analysis, we define angles and their derivatives with
respect to the grid voltage angle θg such that

δ̇k = θ̇k − θ̇g = ωk − ωg,

where δk captures the k-th relative angle difference. Without
loss of generality, we assume that the grid frequency is fixed at
the nominal value such that ωg = ω0, and the angular dynamics
reduces to

δ̇k = − 2η

3V 2
k

(Pk − P �
k ). (14)

N series-connected sets of ac terminals with the aforementioned
control give the following line filter dynamics:

N�

k=1

Vk cos δk = Lf
did
dt

− Lfωiq +Rf id + Vg,

N�

k=1

Vk sin δk = Lf
diq
dt

+ Lfωid +Rf iq (15)

C. PV Terminal Dynamics

Energy buffering between the PV panel and QAB stage is pro-
vided by the PV-side capacitance Cpv. The PV voltage dynamics
can be expressed as

d

dt

�
1

2
Cpvv

2
pv,k

�
= Pin,k − Pout,k, (16)

where Pin,k is the PV-generated power and Pout,k is power
delivered to the QAB. Assuming the QAB circuitry is lossless,
it follows that Pout,k equals the ac-side power Pk for the k-th
module. The input power is expressed as Pin,k = vpv,kipv,k,
where the PV current ipv,k takes the form

ipv,k = io,k − isat,k

�
e

vpv,k+ipv,kRs,k
aVT − 1

�
. (17)

This is known as the single-diode model [45], where for the k-th
module io,k is the photocurrent, isat,k is the diode saturation
current, Rs,k is the series resistance, VT is the thermal voltage,
and a is the diode ideality constant.

Next, we denote the small-signal resistance of the PV modules
as rpv,k and define it [46] as

rpv,k = −∂vpv,k

∂ipv,k
=

−aVT − isat,kRs,k e
vpv,k+ipv,kRs,k

aVT

isat,k e
vpv,k+ipv,kRs,k

aVT

.

A small-signal dynamic model is obtained by the addition of
perturbations to vpv,k, Pin,k, and Pout,k in (16). This gives

d

dt

�
1

2
Cpv(Vpv,k + �vpv,k)

2

�
= (Vpv,k + �vpv,k)

�
Ipv,k +�ipv,k

�

− (P �
k + �p�k) .

To streamline notation, we drop the �x notation for small-signal
terms hereafter. We retain first- and second-order terms while
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neglecting the dc components to get the approximate plant
model

Vpv,kCpv
dvpv,k

dt
= fpv(vpv,k, ipv,k, rpv,k)− p�k. (18)

We will simplify (18) by approximating the value of
fpv,k(vpv,k, ipv,k, rpv,k) at distinct regions across the PV curve.
Toward that end, from Fig. 4 note that rpv,k is close to
Vmpp,k/Impp,k near the maximum power point (i.e., when
Vmpp,k − ε/2 < vpv,k < Vmpp,k + ε/2) and drops (grows) to
small (large) values when approaching the open (short) circuit
operating points. After we define Rmpp,k := Vmpp,k/Impp,k, we
approximate fpv,k(·) as taking on the following forms across the
aforementioned operating regimes:

fpv,k(·)

=

�
�������

�������

Ipv,kvpv,k, when vpv,k < Vmpp,k − ε

2

− v2pv,k

Rmpp,k
, when Vmpp,k− ε

2
< vpv,k < Vmpp,k+

ε

2

−Vpv,k

rpv,k
vpv,k, when vpv,k > Vmpp,k +

ε

2

The PV dc-link controller ensures that the k-th PV voltage vpv,k

is regulated to follow the command v�pv,k, which is produced by
the MPPT. To this end, a PI controller processes the voltage error
and generates the ac-side power reference, P �

k . The PV dc-link
controller is given by

P �
k = kp,pv(vpv,k − v�pv,k) + Cpvki,pv

�
(vpv,k − v�pv,k)dt.

(19)

D. MPPT Control

To evaluate MPPT performance, we seek a simplified version
of (18) and linearize the algebraic expression in (17) around the
MPP [47] to obtain

ipv,k = Impp,k − 1

Rmpp,k
(vpv,k − Vmpp,k). (20)

To track the MPP, we employ the integral control law [47] that
acts on the slope of the PV power–voltage curve as follows:

v�pv,k = γ

�
∂(vpv,kipv,k)

∂vpv,k
dt (21)

Since our main focus is on cascaded converter dynamics with
both dc- and ac-side controllers, we use a relatively simple
MPPT that only guarantees local peak power tracking. The
authors refer to [48] and [49] for techniques that can be used
to modify (21) for global peak power tracking.

IV. SINGULAR PERTURBATION MODELING AND CONTROL

DESIGN

For each of the subsystems described in Section III, we now
shift our focus to designing the controllers after application of
singular perturbation theory. Our overall strategy is predicated
on an intuition of how the various subsystems within each
module interact and seek a logical ordering of timescales over

which they operate. Toward this objective, we first apply singular
perturbation to each subsystem such that it is partitioned into fast
and slow modes. This yields a form that is amenable to design
such that we can obtain the preordained ordering and separation
of timescales while also guaranteeing stability within and among
subsystems. In the ensuing analysis we apply the aforemen-
tioned strategy and describe each subsystem sequentially from
fastest to slowest.

A. QAB DC-Link Voltage Regulation

1) State Equations: DC-link voltage control is achieved
through the PI regulator in (6). To cast the subsystem in (5)–(6)
into the singular perturbation framework, we define two new
states as

e1,k := nvpv,k − vdc,k, e2,k := Cdc

� τ

0

e1,k dσ + e2,k(0),

where τ = t/Cdc is the new time variable associated with the
fast mode. Now (5) and (6) can be rewritten as

Cdc
de1,k
dτ

=
−vpv,k

nLωsw
(kp,dce1,k + ki,dce2,k) +

Pk

3vdc,k
0
, (22)

de2,k
dτ

= Cdce1,k. (23)

Drawing a parallel between (3) and (22), we set Cdc

to zero, obtain the algebraic solution of ē1,k, and sub-
stitute that into (23) to obtain the reduced-order model
as follows:

dē2,k
dt

= − ki,dc
kp,dc

ē2,k +

�
vpv,k

nLωsw

�−1
P

3kp,dcv0dc,k

(24)

Mirroring (4), the fast mode model is

d�e1,k
dτ

= − vpv,kkp,dc
nCdcLωsw

�e1,k =: −ωf
QAB�e1,k, (25)

where we recall from (4) that �e1,k captures the error in excess
of O(ε) in e1,k − ē1,k.

2) Stability and Control Parameter Selection: Following the
stability conditions in Section II-A, it is necessary to ensure
kp,dc ≥ 0 and ki,dc ≥ 0. From (24), the effective bandwidth of
the QAB loop is

ωQAB =
ki,dc
kp,dc

. (26)

This leads us to the first stability criterion as

ωQAB � ωf
QAB � ωsw, (27)

where ωQAB corresponds to the slower acting integral control
andωf

QAB captures the bandwidth of the fast mode model in (25).
After appropriate substitutions from (25)–(26) into (27) give the
following guideline for control gain selection:

ki,dc
kp,dc

� vpv,kkp,dc
nCdcLωsw

� ωsw. (28)

In addition to (27), stability of the timescale-separated QAB
dc-link subsystem in (22)–(23) depends on the value of the
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perturbation parameterCdc. We rigorously derive the upper limit
of Cdc in Appendix A. Similar conditions can be computed for
each and every subsystem, but we withhold these for the sake of
paper compactness.

B. DVOC-Based Inverter Control

1) State Equations: The nonlinear control law given by
(10)–(14) exhibits slower dynamics than the plant in (15).
This follows from the observation that the small perturba-
tion parameter Lf/Rf gives fast line dynamics. Hence, we
set Lf/Rf = 0 and obtain the following algebraic solution
from (15):

id =

�N
k=1 Vk cos(δk − φf)− Vg cos(φf)

Zf
, (29)

iq =

�N
k=1 Vk sin(δk − φf) + Vg sin(φf)

Zf
, (30)

where we recall that Zf and φf denote the line impedance
amplitude and angle, respectively. It follows that the ith module
delivers the active and reactive power

Pi =
3Viid cos δi

2
, Qi = −3Viiq sin δi

2
,

and substitution of (29)–(30) gives

Pi =

N�

k=1

3VkVi

2Zf
cos(δk − δi − φf)− 3VgVi

2Zf
cos(−δi − φf),

Qi = −
N�

k=1

3VkVi

2Zf
sin(δk − δi − φf) +

3VgVi

2Zf
sin(−δi − φf).

(31)

Insertion of (31) into (14) gives the angle dynamics

δ̇i = − 2η

3V 2
i

�
N�

k=1

3VkVi

2Zf
cos(δk − δi − φf)

−3VgVi

2Zf
cos(−δi − φf)− P �

i

�
. (32)

To obtain a small-signal model for the ith inverter angle, we
linearize (32) as

�̇δi =
η

ViZf

 

!"
N�

k=1
k �=i

Vk sin (δi − δk + φf)− Vg sin (δi + φf)

#

$% �δi

− η

ViZf

N�

k=1
k �=i

Vk sin (δi − δk + φf)�δk, (33)

where �δi represents a small-signal perturbation in δi. This is
rewritten in matrix to obtain

�̇δ = (η/Zf)A�δ,

where δ = [δ1, δ2, . . . , δN ]� is the state vector and the state
matrix A is

A =



���������������

N�

k=1
k �=1

ξ1k − ξ1 −ξ12 . . . −ξ1N

−ξ21
N�

k=1
k �=2

ξ2k − ξ2 . . . −ξ2N

...
...

. . .
...

−ξN1 −ξN2 . . .
N�

k=1
k �=N

ξNk − ξN

�

���������������

. (34)

We define ξik and ξi in (34) as

ξik :=
Vk

Vi
sin (δi − δk + φf), ξi :=

Vg

Vi
sin (δi + φf). (35)

The Gershgorin discs [50] for A are defined as
�
���

���
z ∈ C : |z − aii| ≤

N�

j=1
j �=i

|aij |

&
��’

��(
, i = 1, 2, . . . N.

From [50, Th. 6.1.1], we know that every eigenvalue of A will
be located within the union of the above discs denoted as

G(A) :=

N)

i=1

�
���

���
z ∈ C : |z − aii| ≤

N�

j=1
j �=i

|aij |

&
��’

��(
.

If under all operating conditions, G(A) is shown to lie entirely
within the left-half plane (LHP), a sufficient condition of stabil-
ity for the ith module, where i ∈ {1, 2, . . . N}, is

|�i − aii| ≤
N�

j=1
j �=i

|aij | ⇒ −
N�

j=1
k �=i

|aij | ≤ �i − aii ≤
N�

j=1
k �=i

|aij |.

For all eigenvalues to be in the LHP, we need

�i ≤
N�

j=1
k �=i

|aij |+ aii ≤ 0, i = 1, 2, . . . N. (36)

We substitute the value of aij th element of A from (34)
into (36) to obtain the following stability condition:

N�

k=1
k �=i

|ξik|+
N�

k=1
k �=i

ξik − ξ1 ≤ 0 (37)

Using the identity
�

k |xk| ≥
�

k xk, a simplified but stricter
condition is given by

2
N�

k=1
k �=i

|ξik| − ξ1 ≤ 0. (38)
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Fig. 3. Example case of N = 3 modules where unit #1 is powered from PV,
whereas units #2 and #3 are powered with dc supply. R1 and R2 indicate
regions where stable operation is guaranteed via eigenvalue analysis. The gray
area shows 30% power mismatch between P �

1 and either P �
2 or P �

3 .

Assuming equal module voltages such that Vj ≈ Vk ≈ Vg/N ,
we substitute ξij and ξi from (35) into (38) to obtain the follow-
ing stability criterion:

2

N�

k=1
k �=i

| sin (δi − δk + φf)| ≤ N sin (δi + φf) (39)

The preceding analysis is generalized and does not make any
assumptions about equal module voltage or power. We substan-
tiate the preceding analysis with a numerical example which
mirrors the experimental setup in Section V.

We choose N = 3, where module #1 is powered by a PV
source and modules #2 and #3 are powered by dc voltage sources
and have power commands P �

2 = P �
3 . In Fig. 3, the unshaded

region is infeasible for the system parameters in Table I. The
blue hatched region, denoted as R2, representsP �

i , i ∈ {1, 2, 3}
for which the cascaded system is stable by eigenvalue analysis.
Shown in red-hatch, R1 represents P �

i , i ∈ {1, 2, 3} for which
the system is sufficiently stable according to (37). Stability
guarantees of the simplified condition in (39) approximately
correspond to R1. The gray region where i, j � |P �

i − P �
j | <

0.3Pmax represents power mismatch between PV panels due
to nonuniform insolation, manufacturing tolerances, and tem-
perature differences. These variations yield power differences
that are generally well within region R1 where stability is
guaranteed. Experimental operating points, marked as , are at
the margins of theoretical stability. Having demonstrated stable
MPPT operation for those points in Section V, we expect stable
operation in the gray region in Fig. 3 where mismatches are
reasonable and practical.

2) Stability and Control Parameter Selection: The dVOC
controllers are simultaneously responsible for module-level
power tracking and system-level synchronization. Assum-
ing equal reactive power references such that Q�

i = Q�
j ,

∀ i, j ∈ {1, N}, it follows from (10) that all module voltages
are equal and Vi = Vj ≈ Vg/N , ∀ i, j ∈ {1, N}. Furthermore,
since the voltage dynamics are significantly faster than the

TABLE I
SYSTEM PARAMETERS

angle dynamics (see Appendix B), we can decouple the voltage
dynamics from the angle dynamics to simplify (32) as

δ̇i=− η

Zf

�
N�

k=1

cos(δk−δi−φf)−N cos(−δi−φf)−P �
i

�

.

(40)
To obtain closed-form expressions for bandwidth that enable us
to enforce timescale separation among the various subsystems,
we now assume equal power delivery for all modules. Equation
(14) indicated that when module angles become identical δi =
δj , ∀ i, j ∈ {1, N}, the resulting angle dynamics are given by

δ̇i = − η

Zf
(N cos(φf)−N cos(δi + φf)− P �

i ) . (41)

Without loss of generality, assume the line has equal reactance
and resistance such that φf = π/4 and (41) becomes

δ̇i = − ηN

Zf

√
2

�

1− cos δi + sin δi − P �
i

√
2

N

�

. (42)

Under small values of δi in (42), the effective bandwidth of the
system is

ωdVOC =
ηN

Zf

√
2
. (43)

Stability of (10) necessitates μ, η > 0 since Vk is positive.
Moreover, since we need timescale separation between ωdVOC
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and ωQAB, it follows that (43) and (26) imply

ωdVOC � ωQAB → ηN

Zf

√
2
� ki,dc

kp,dc
. (44)

Recall the frequency droop in (12) and note that the frequency
deviation parameter Δω can be adjusted to ensure (44) is met.
The desired voltage tradeoff in (13) informs the choice of μ and
the numerical approach in [5] can be used to further substantiate
ac-side stability.

C. PV DC-Link Control

1) State Equations: The PI controller in (19) regulates vpv,k.
To cast (18)–(19) into the singular perturbation framework, we
define two new states as

e1,k = vpv,k − v�pv,k, e2,k = Cpv

� τ

0

e1,kdσ + e2,k(0),

where τ = t/Cpv is the new time variable for the fast mode.
Now (18)–(19) can be rewritten as

Cpv
de1,k
dτ

=

�
�����������������������

�����������������������

Ipv,k − kp,pv
Vpv,k

e1,k − ki,pv
Vpv,k

e2,k +
Ipv,kv

�
pv,k

Vpv,k
,

when vpv,k < Vmpp,k − ε

2
,

− e21,k
Vpv,kRmpp,k

− 2v�pv,k + kp,pvRmpp,k

Vpv,kRmpp,k
e1,k

− ki,pv
Vpv,k

e2,k − v�pv,k
2

Vpv,kRmpp,k
,

when Vmpp,k − ε

2
< vpv,k < Vmpp,k +

ε

2
,

−
�

1

rpv,k
+

kp,pv
Vpv,k

�
e1,k − v�pv,k

rpv,k
− ki,pv

Vpv,k
e2,k,

when vpv,k > Vmpp,k +
ε

2
,

(45)

de2,k
dτ

= Cpve1,k. (46)

Linking (3) and (45), we set Cpv = 0 to give us the algebraic
solution of e1,k. This is substituted into (46) to obtain the
reduced-order model

dē2,k
dt

=

�
����������

����������

ki,pv
Ipv,k − kp,pv

ē2,k − Ipv,kv
�
pv,k

Ipv,k − kp,pv
,

when vpv,k < Vmpp,k − ε

2
,

− ki,pv
kp,pv

ē2,k − v�pv,kVpv,k

Vpv,k + rpv,kkp,pv
,

when vpv,k > Vmpp,k +
ε

2
.

(47)

Since the maximum power point is bounded by the constant
voltage and constant current regions on either side, our strategy
is to ensure stability on those two operating regimes, where
|vpv,k − Vmpp,k| > ε/2. This approach gives stability across the
entire PV curve. Following (4), the fast mode model is

d�e1,k
dτ

Fig. 4. Curves for PV current, power, and small-signal resistance across the
operating range of voltages. Each curve is normalized to facilitate comparison.
A region of width � around the maximum voltage Vmpp is highlighted.

=

�
���

���

− 1

Cpv

kp,pv − Ipv,k
Vpv,k

�e1,k, when vpv,k < Vmpp,k − ε

2
,

− 1

Cpv

�
1

rpv,k
+
kp,pv
Vpv,k

�
�e1,k, when vpv,k > Vmpp,k+

ε

2
.

(48)

2) Stability and Equivalent Model: Stability of (48) is guar-
anteed when kp,pv ≥ Ipv, while ki,pv ≥ 0 gives the stability
of (47). The equivalent bandwidths implied for the two regions
in (47) are

ωcc :=
ki,pv

kp,pv − Ipv,k
, ωcv :=

ki,pv
kp,pv

, (49)

where ωcc and ωcv denote the bandwidths for the constant
current and constant voltage regions characterized by vpv,k <

Vmpp,k − ε

2
and vpv,k > Vmpp,k +

ε

2
, respectively. Bandwidths

for the model in (48) are

ωf
cc :=

1

Cpv

kp,pv − Ipv,k

Vpv,k
, ωf

cv :=
1

Cpv

�
1

rpv,k
+

kp,pv
Vpv,k

�
,

(50)
where the subscripts in ωf

cc and ωf
cv conform to the notation

in (49). To enforce appropriate timescale separation, we need

max(ωf
cc, ω

f
cv) � ωdVOC, (51)

max(ωcc, ωcv) � min(ωf
cc, ω

f
cv). (52)

For the k-th module, plugging (49)–(50) into (51)–(52) gives the
following design guidelines:

kp,pv ≥ Isc, (53)

max

�
1

Cpv

kp,pv − Ipv,k

Vpv,k
,

1

Cpv

�
1

rpv,k
+

kp,pv
Vpv,k

��
� ωdVOC,

(54)

max

�
ki,pv

kp,pv − Ipv,k
,
ki,pv
kp,pv

�

� min

�
1

Cpv

kp,pv − Ipv

Vpv,k
,

1

Cpv

�
1

rpv,k
+

kp,pv
Vpv,k

��
(55)
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Fig. 5. The control architecture of the k-th converter module contains the following interconnected control loops: MPPT, PV dc-link control, floating dc-link
controls, and dVOC-based ac-side control. The quadruple active bridge converter is compactly depicted with three dc–dc blocks, and the dc–ac H-bridge inverters
interface to adjacent units in the system.

D. Maximum Power Point Tracking

1) State Equations: The MPPT controller in Fig. 5 uses ipv,k

and vpv,k to determine the voltage reference v�pv,k for the PV
dc-link regulator. Substitute the plant model in (20) into the
MPPT integral control law in (21) to obtain

v̇�pv,k = γ
∂(vpv,kipv,k)

∂vpv,k
= γ

�
vpv,k

∂(ipv,k)

∂vpv,k
+ ipv,k

�
,

= −2
γ

Rmpp,k
vpv,k + 2γImpp,k.

2) Stability and Equivalent Model: Fast inner control en-
sures vpv,k = v�pv,k such that the MPPT law simplifies into

v̇�pv,k = −2
γ

Rmpp,k
v�pv,k + 2γImpp,k.

The equivalent bandwidth of the MPPT loop becomesωmppt =
2γ/Rmpp,k and the corresponding stability condition that en-
forces timescale separation is

ωmppt � min (ωcc, ωcv) .

The controller gain γ is selected such that

2
γ

Rmpp,k
� min

�
ki,pv

kp,pv − Ipv
,
ki,pv
kp,pv

�
. (56)

V. EXPERIMENTAL RESULTS

Referring to Fig. 6, we demonstrate cascaded converter op-
eration with fully functional decentralized controls on a system

of three series-connected modules across the grid and an output
filter. Module #1 was fed by a solar array simulator, whereas
modules #2 and #3 were powered by a fixed dc supply. All
converter modules are rated for equal power delivery and employ
identical controllers with the exception that modules #2 and
#3 do not have MPPT and PV dc-link controllers due to their
fixed dc inputs. To carry out decentralized control, each module
in Fig. 6(b) has its own control board that controls the QAB
and three single-phase inverters. Each control board uses a
TI-TMS280379D microcontroller. The dVOC subsystem design
is constrained by:

i) the droop conditions in (12)–(13);
ii) ac-side stability among theN series-connected oscillator-

controlled inverters [5];
iii) stability for cascaded converters under mismatched power

conditions given by (37);
iv) stable interactions among the control loops within each

module as implied in (44) and (51).
In particular, we observe that constraints (44) and (51) must

hold true for varying grid strength, where Zf takes on a range
of values. Given that the dVOC controller lies at the epicenter
of several potentially competing requirements, we choose its
parameters (i.e., μ and η) first among all the controllers. From
there, all other control designs emanate outwardly from the
dVOC subsystem such that the stability and timescale separation
guidelines in (28), (51), (52), and (56) are met. Table I lists
the relevant system parameters and control gains that enforce
timescale separation. Fig. 7 collects the relevant bandwidths
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Fig. 6. The experimental setup in (a) has three converter modules with series connections on their ac sides. One converter module, as shown in (b), contains a
QAB stage with high frequency magnetics along with three single-phase inverters.

Fig. 7. Various timescale-separated controllers are shown with their respective control bandwidths that are designed through singular perturbation approach.

Fig. 8. Startup transients show three series-connected modules synchronizing to the ac grid without external communication. The modules are synchronized with
zero active power transfer to the grid after 25 s. A small reactive component remains due to a mismatch between the grid voltage and sum of commanded voltages.

corresponding to each of the subsystems in the decreasing order
of frequency.

A. Start-Up Procedure

To begin, a current-limiting resistor was added in series with
the converters. Next, the inverters were effectively bypassed
by turning ON the lower MOSFETs of each ac-side H-bridge.
As seen on the left-hand side of Fig. 8(a), a current flows
through the stack of bypassed converters that can be sensed
by each module. This allows each inverter to synchronize its
dVOC-based controller and begin switching with zero power
commands (i.e., P �

k = 0, k ∈ {1, 2, 3}). Thereafter, the dVOC
modulates each inverter and power command tracking is even-
tually reached such that Pk = 0, k ∈ {1, 2, 3}. At this point, the

modules have achieved communication-free synchronization, as
shown by the aligned voltage waveforms in Fig. 8(b). The modest
line current that remains is purely reactive and is due to small
line voltage drops and mismatches between the grid voltage and
commanded values.

B. Nominal Operation

Power from modules #2 and #3 climb up to 200 W over
1 s after the modules have synchronized. As seen in Fig. 9(a),
dc-side currents ipv,2 and ipv,3 increase to accommodate active
power tracking such that Pk = P �

k , k ∈ {2, 3}. Module #1
power reference P �

1 originates from the upstream PV dc-link
controller, which is, in turn, controlled by the MPPT control
law. Power tracking in module #1 implies P1 = P �

1 , which
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Fig. 9. Experimental results show performance of subsystems within each module for three converters connected in series across a stiff grid. MPPT integral
control action for module #1 occurs across the slowest timescale where it is evident in (a) that the operating point moves from open circuit to the MPP. Modules
#2 and #3 show stable operation with constant dc power. In (b), we zoom in on a few ac cycles of the phase-a voltages produced by the modules and grid. Along
with the regulated three-phase currents, these ac waveforms collectively show proper operation of the other controllers along with dVOC.

Fig. 10. Experimental results in (a) illustrate regulation of phase-a QAB floating dc-link voltages in modules #1, #2, and #3. Module #1 input voltage shows a
transition from the open circuit to MPP voltage. The second harmonic ripple in (b) is due to single-phase power delivery.

ensures PV dc-link voltage regulation where vpv,1 = v�pv,1.
Thereafter, the MPPT controller continuously nudges v�pv,1 until
the maximum power point is reached at vpv,1 = Vmpp. While
PV power ramps up, as depicted in Fig. 9(a), ipv,1 approaches
Impp and output power becomes P1 ≈ P �

1 = Pmpp. Zoomed-in
steady-state waveforms show a few ac cycles in Fig. 9(b).
Phase a line–neutral voltages for all three modules and the
grid are plotted. Switched module voltages vak , ∀k ∈ {1, 2, 3},
appropriately lead the grid waveform to ensure Pk = P �

k ,
k ∈ {1, 2, 3}.

The power reference for module #1 oscillates around its MPP
of 480 W, while the reference for the other two modules are fixed
at 200 W. This is reflected in the equal phase shifts of switched
voltages va2 and va3 and the larger phase shift of va1 relative to the
grid. All three modules have the same reactive power reference,
Q�

1 = Q�
2 = Q�

3 = 0. However, the droop characteristic in (13)
does not guarantee perfect reactive power tracking since voltage
is a local quantity. Hence, the waveforms in Fig. 9(b) do imply
some reactive power transfer.

To evaluate QAB dc-link voltage regulation, refer to Fig. 10(a)
that shows module #1 input voltage vpv,1 and its trajectory
from Voc to Vmpp. Correspondingly, the phase a floating dc-link
voltage vadc,1 tracks n vpv,1. For the other two modules with
fixed voltage inputs, the floating dc-link voltages on phase a are

Fig. 11. Experimental results for steady operation around the MPP for module
#1 during a ramp change in P �

2 and P �
3 .

held steady such that vadc,2 = vadc,3. The floating dc-link voltages
on phases b and c are identical to the phase-a waveform for
each respective module and are hence omitted. Inspection of the
voltages in Fig. 10(b) reveals a second harmonic that is typical
for single-phase power transfer. These pulsating components
cancel once summed on the QAB primary input. However, the

Authorized licensed use limited to: University of Texas at Austin. Downloaded on April 04,2023 at 22:02:06 UTC from IEEE Xplore.  Restrictions apply. 



4318 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 38, NO. 4, APRIL 2023

Fig. 12. Experimental results show the robustness of the cascaded set-up when PV power is suddenly changed. Steady state operation at the two PV curve-A and
PV curve-B appearing in Table II is shown in (a) and (c) respectively. In (d) we show the ability of system to undergo successive transitions between the two PV
curves and we zoom on one such transition in (b).

Fig. 13. AC-side waveforms for the low insolation PV curve-A and high insolation PC curve-B are shown in (a) and (b), respectively. The different power level
is reflected in the ac-side currents and phase-shift between phase-a grid voltage and corresponding ac-side voltage of module #1.

TABLE II
PV CURVES

switching frequency harmonics of QAB and its multiples thereof
still remain in the system and can be seen in Fig. 9(a) as the
background high-frequency noise in ipv,k ∀ k ∈ {1, 2, 3}.

C. Response Under Dynamic Power Sharing

We now illustrate the ability of the proposed module-level
control structure to preserve intended operation despite time-
varying operating conditions in the remaining series-connected
modules. Toward that end, we induce a 200 W→ 300 W power
reference step change in modules #2 and #3, and observe the
response of module #1. As shown in Fig. 11, module #1 is able to
maintain MPPT operation and the overall system remains stable.

We next demonstrate the stability of the cascaded system for a
step change in PV power of module #1. Fig. 12(a) and (c) shows
the steady-state MPP operation at the two curves described
in Table II. In Fig. 12(b), we capture the transients when we
suddenly switch from PV curve-A to PV curve-B, whereas
Fig. 12(d) shows repeated transitions between PV curves A and
B. Note that the fast transients in vpv,1 and ipv,1 are quickly
damped out by the stable MPPT controller. Modules #2 and
#3 continue to be regulated at Pk = 200 W, k ∈ {2, 3} and
are able to maintain stable operation during the PV transients

Fig. 14. Series-connected converter setup is shown to ride-through a 10%
undervoltage condition. As the grid voltage reduces, the reactive power drops
resulting in smaller ac-side currents.

in module #1. Fig. 13(a) and (b) illustrates the corresponding
steady-state ac-side waveforms corresponding to PV curve-
A and PV curve-B, respectively. Higher power operation in
Fig. 13(b) is characterized by larger ac-side currents and greater
phase-shift between the switched-voltage va1 and vagrid compared
to low insolation operation in Fig. 13(a).

D. Nonideal AC-Side Conditions

To validate grid-forming functionality, we study low-voltage
and under-frequency ride-through performance of the cascaded
connection. We also report the current and voltage total harmonic
distortion (THD) of the two operating points given in Table II.
When the grid voltage is reduced from the nominal value of 90 to
81 V in RMS, the volt-Var droop causes each module to reduce
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Fig. 15. Grid-forming operation is verified when the grid frequency is suddenly changed from 60 to 59.4 Hz. Module #1 connected to the PV input continues to
operate at MPP. Modules #2 and #3 with constant dc-input voltage slightly increase their power output in accordance to their droop law.

TABLE III
CURRENT HARMONICS OF AC-SIDE OUTPUT CURRENT AS PERCENTAGE

Fig. 16. Unstable dynamics between the PV dc-link controller, its adjacent dVOC, and MPPT controllers is studied, where kp,pv = 10 A results in a stable
system and kp,pv = 0.1 A results in a PV voltage collapse. System stability can be restored once we revert to stable kp,pv = 10 A.

its reactive power output. This is reflected in the lower ac-side
currents, as shown in Fig. 14.

The underfrequency response is shown in Fig. 15, where the
grid-simulator suddenly changes its ac frequency from 60 to
59.4 Hz. In Fig. 15(a), modules #2 and #3 operated from a fixed
voltage source can be seen to increase their dc currents. This is
due to their dVOC-based ac-side control that forces an increase
in active power output to restore the system frequency. However,
module #1 continues to operate at the fixed MPP, and only sees
a brief transient during the frequency change that is stabilized
by the PV controllers. These transients are reflected in their
respective ac-side waveforms shown in Fig. 15(b), where we
have zoomed in on the instant of frequency change.

The voltage THD was recorded as 0.554% and 0.858% at MPP
curves A and B, respectively. The current THD is calculated
using specifications in IEEE standard 519-2014, as given in

Table III. A Yokogawa WT5000 power analyzer was used to
record these measurements. All THD measurements are well
below the recommended standards.

E. Destabilizing Controllers

We have established the importance of the design guidelines
in (28), (44), (51), (52), and (56) to obtain stabilizing controllers.
We now focus on evaluating system performance when the
aforementioned design rules are violated.

1) PV DC-Link Control Instability: The condition kp,pv >
Isc obtained from the fast-mode dynamics of the PV dc-link
controller is a new and unique contribution. We start our
experiment with stable operation where kp,pv = 10 A. For
Isc = 4 A, to induce instability, we switch to kp,pv = 0.5 A
and finally revert to kp,pv = 10 A to demonstrate the stabilizing
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Fig. 17. Experimental results show the cascaded system performance for controllers that violate singular perturbation-based design rules resulting in unstable
interaction between the dVOC and QAB dc-link controller. We change � from 100 (stable) to 4000 (unstable) to demonstrate the unstable interaction.

properties of the proposed controller. In Fig. 16(a) and (b), we
observe the dc- and ac-side waveforms during the change in
kp,pv. We zoom in on a few cycles during unstable operation
in Fig. 16(c), where low vpv,1 causes overmodulation in va1 and
large ac-side currents.

2) Interaction Between dVOC and QAB DC-Link: To study
the interaction between the dVOC and QAB dc-link control, we
provide power for all modules with dc voltage supplies and avoid
any MPPT or PV dc-link controllers. We start stable operation
with η = 100 in all three modules and then change η in module
#3 to 4000 such that (44) is violated. This causes instability
in the dc-link current, as shown in Fig. 17(a). Additionally,
the ac-side currents appearing in Fig. 17(b) and shown more
closely in Fig. 17(c) are highly distorted and lead to unstable
operation. As we further change to η2 = 4000, an extremely
large overcurrent trip the cascaded converter setup.

VI. CONCLUSION

In this article, we proposed a method to design controllers for
series-connected dc–ac converters in transformerless medium-
voltage applications. A hierarchy of controllers was imple-
mented to control this converter, including MPPT, QAB floating
dc voltage control, PV dc-link regulation, and ac-side power
control. A singular perturbation-based controller design was
implemented to decompose the system into multiple subsystems
and enforce timescale separation between them. We experimen-
tally verified the stability of the proposed approach on three
1000-W modules connected across a stiff grid.

APPENDIX A
STABILITY PROOF

The nonlinear model of the form in (2) and (3) can be used to
represent any subsystem in this article. This model is linearized
around its equilibrium to yield

Δẋ = A11Δx+A12Δz,

εΔẋ = A21Δx+A22Δz.

If A−1
22 exists and if A0 := A11 −A12A

−1
22A21 and A22 are

Hurwitz matrices, then there exists an ε� > 0 such that for all

ε ∈ (0, ε�] [38, Corollary 3.1], the system (2)–(3) is asymptoti-
cally stable. The limiting value of ε� is

ε� =
�‖A−1

22 ‖
�‖A0‖+ ‖A12‖‖A−1

22A21‖

+2
�‖A0‖‖A12‖‖A−1

22A21‖
�1/2��−1

.

Regarding QAB dc-link control, the dynamics in (22)–(23)
imply A11 = 0, A12 = Cdc, A21 = −vpv,kki,dc/nLωsw, and
A22 = −vpv,kkp,dc/nLωsw. The maximum limit on ε for the
scalar dynamics is

ε� =
A2

22

4‖A12A21‖ =
vpv,kk

2
p,dc

4nLωswCdcki,dc
.

Stability of the QAB dc-link subsystem is confirmed by ensuring
ε = Cdc < ε�.

APPENDIX B
VOLTAGE AND ANGLE DYNAMICS

The rise time of the voltage for the k-th module obtained
from (14) is given by

tVk
rise =

� 0.9Vnom

0.1Vnom

dt

μVk

��
Vg
N

�2
− V 2

k

� ≈ 3.0226

μ
�

Vg
N

�2 . (57)

The corresponding equivalent first-order angle dynamics
from (14) and (42) is

tδk
rise =

2 ln(3)

ωdVOC
=

2 ln(3)Zf

√
2

ηN
. (58)

When analyzing the dynamics of the inverter angle δk, the
voltage dynamics can be ignored if tVk

rise is negligible compared
to tδk

rise. To enforce tVk
rise � tδk

rise, from (57) and (58) we obtain

3.0226

μ
�

Vg
N

�2 � 2 ln(3)Zf

√
2

ηN
→ η

μ
� 1.028

V 2
g Zf

N3
=: κ. (59)

For the experiment, we use η/μ = 100/1, which is negligible
compared to κ = 3164 in context with the other parameters in
Table I.
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