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Abstract—This paper presents a model-order reduction and
dynamic aggregation strategy for grid-forming inverter-based
power networks. The reduced-order models preserve the network
current dynamics as well as the action of the inverter current-
reference limiter. Inverters based on droop, virtual synchronous
machine, and dispatchable virtual oscillator control are consid-
ered, a generic model for all three control strategies is presented,
and a smooth function approximation is utilized to represent the
action of the current-reference limiter. The network is assumed
to be composed of lines with homogeneous l/r ratios. Given
such a system, our approach involves three steps. First, time-
domain Kron reduction is used to reduce the dimensions of
the electrical network model. Next, dynamic aggregate models
are developed for parallel-connected inverters. Finally, singular
perturbation analysis is used to systematically eliminate fast-
varying dynamics in both the network model and the grid-
forming inverter single/aggregate models. Numerical simulation
results benchmark the response of the reduced-order aggregate
models against the full-order models from which they are derived,
and we demonstrate significant savings in computation cost with
limited loss of accuracy.

Index Terms—Grid-forming control, Current limitation, Droop
control, Virtual synchronous machine, Dispatchable virtual os-
cillator control, Reduced-order modeling, Dynamic aggregation,
Singular perturbation analysis.

I. INTRODUCTION

AS the displacement of synchronous machines by inverter-
based power generation gains momentum, several in-

verter control strategies that could potentially accelerate this
transition have been proposed. Among them, grid-forming
(GFM) inverter technologies have received significant atten-
tion [1]. GFM inverter-based resources (IBRs) essentially
behave as a signal-controlled AC voltage source behind an
impedance [2], and their underlying controls may be based
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on droop [3], [4], virtual synchronous machine (VSM) [5]–
[7], virtual oscillator control (VOC) [8], [9], or dispatchable
virtual oscillator control (dVOC) [10]–[12].

The dynamic characteristics of GFM IBRs are influenced by
several subsystems including, but not limited to, controllers,
filters, reference-frame transformations, and current limiters.
As a result, electromagnetic transient models for networked
GFM IBRs have numerous dynamical states spanning several
timescales. To tame model complexity and preserve model ac-
curacy, this paper outlines a comprehensive approach to model
reduction and aggregation for networks with GFM IBRs:

• Model reduction. This is pursued at the network level and
then at a system level. A combination of time-domain
Kron reduction and singular perturbation is leveraged to
reduce the model-order for the network of GFM inverters,
while preserving the network current dynamics and the
effects of current limiters.

• Dynamic aggregation. A systematic procedure is outlined
for scaling parameters of parallel-connected GFM invert-
ers and obtaining an aggregate model that retains the
structure of individual GFM inverter models while faith-
fully capturing the aggregation of all individual resource
dynamics in the time domain.1

Contributions: The proposed approach yields lower-order
models for electrical power networks and GFM IBRs, as
well as structure-preserving aggregate models for parallel-
connected GFM IBRs of the same type. While model-order
reduction and dynamic aggregation for IBRs has received
significant attention in the literature (we review prior art
shortly), our approach offers notable contributions from three
angles:

1) it applies, in a generalized manner, to a variety of GFM
IBR control methods (i.e., droop, VSM, dVOC) that are
garnering significant attention in the literature;

2) it preserves the impact of current-reference limiting and
network current dynamics in the reduced-order models;

3) it leverages dynamic aggregate models that mirror the
structure of originating models without any loss in mod-
eling accuracy.

Note that: 1) ensures the universal applicability of the proposed
approach in modeling future grids with GFM IBRs of different
types. Furthermore, the impact of current-reference limiters

1The terminology of Dynamic Aggregation is adopted from classical
efforts in the literature on synchronous generators. Over the years, other terms
have been put forward to capture the same concept, for instance, Dynamic
Equivalence finds frequent mention as well.
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and network dynamics have been recognized to be relevant
in control design and operation of GFM IBRs [13]; this
underscores the importance of 2). Finally, with regard to
3), structure-preserving aggregations prevent duplication of
dynamic models (i.e., one does not have to develop models
for all the GFM inverters in a parallel-connected set) and
provide further model-order reductions (i.e., a collection of
n dynamical systems can be represented by an equivalent
dynamical system) without loss of accuracy. Taken together,
the contributions 1)-3) fill gaps in available methods for model
reduction from the device and network levels, while capturing
salient features of GFM technology (such as the variety in
primary control methods and current limiting). The setting also
acknowledges the fact that IBRs are routinely connected in
parallel to scale capacity in plants (further adding to modeling
complexity). Uniquely, all the reduced-order models we put
forth (at the device and network level) preserve structure of
the originating models. This is a deliberate attempt to ensure
the approach is accessible to a wide range of potential users
and can be readily implemented in common simulation tools.
In general, straight-up application of numerical methods for
model reduction do not come with any guarantees on the
structure of the reduced-order models.

Literature Review: The development of reduced-order mod-
els from full-order models of electric power networks has
received significant attention in the literature. Reduced-order
models have been developed using coherency and aggregation
[14], selective modal analysis [15], synchronic modal equiva-
lencing [16], Kron reduction [17], and singular perturbation
analysis [18]. In [19], authors present the model-order re-
duction of an islanded microgrid using singular perturbation
analysis. However, the electrical network dynamics are not
considered, and the originating full-order model is not pre-
sented. Authors in [20] present a reduced-order Kuramoto-
type model for grid-forming inverters that was developed using
singular perturbation analysis and Kron reduction; a lossless
electrical network is considered and sufficient conditions for
which the Kuramoto-type model is valid are presented. In [21],
a full-order model for inverter-based microgrids is presented,
and singular perturbation analysis is used to perform model-
order reduction, as done in this work. However, the small
parameters used for singular perturbation analysis are not
explicitly identified, details of the model reduction process
are not presented, and the impacts of current limiters are
not considered. Singular perturbation has been leveraged in
several other prior efforts for model reduction of inverter
based networks [22]–[27]. However, these approaches do
not encompass as comprehensive of a setting as ours, i.e.,
acknowledging different primary control types, time-domain
network dynamics, and dynamic aggregation. In [28] time-
domain Kron reduction is used to develop reduced-order
models for electrical networks with homogeneous resistance-
to-reactance ratios. However, there does not appear to be work
that has leveraged time-domain Kron reduction deliberately
as part of model reduction in complex networks. Our current
effort takes a step in this direction. Note however, that since
we build off [28], our approach is constrained to networks that
have homogeneous lines.

Notation: The n× n diagonal matrix with diagonal entries
x1, . . . , xn is denoted by diag(x1, . . . , xn). The identity ma-
trix is denoted by I, the standard-basis column vector with 1
in the k-th position is denoted by ek, and the all-zeros and
all-ones column vectors are denoted by O and 1, respectively.
(Dimensions of I, ek, O, and 1 are not specified in the notation
but can inferred from context when utilized.)

Reference-frame Transformations: We consider two direct-
quadrature rotating reference frames as follows: (i) the DQ
reference frame (also referred to as synchronously rotating
reference frame), which rotates in synchrony with the system
nominal angular frequency—assumed to be constant; and
(ii) the dq reference frame, which rotates at a time-varying
frequency whose value is determined by the reference angular
frequency of a particular GFM inverter (see [29, pp. 69–114]
for more details). In the remainder, all three-phase variables
and companion signals are represented in either the DQ or dq
reference frames. Corresponding to three-phase signal

f(t) = [fa(t), fb(t), fc(t)]
⊤,

we write f ′(t) = [fD(t), fQ(t)]⊤ and f ′′(t) = [fd(t), fq(t)]
⊤

to denote its DQ and dq representation, respectively. Define

δ(t) = δ0 +

∫ t

0

(ω◦(x)− ω0) dx, (1)

with δ0 = δ(0), and where ω0 and ω◦(t) respectively denote
the nominal angular frequency and the reference angular
frequency of a particular GFM inverter. Then, f(t), f ′(t) and
f ′′(t) are related via

f ′(t) = T(ω0t)f(t), (2a)
f ′′(t) = T(δ(t))f ′(t), (2b)

where T(·), and T(·) are transformation matrices given by

T(θ) =
2

3

[
cos θ cos(θ − 2π

3 ) cos(θ + 2π
3 )

− sin θ − sin(θ − 2π
3 ) − sin(θ + 2π

3 )

]
,

T(θ) =

[
cos θ sin θ
− sin θ cos θ

]
.

Henceforth, we will simplify the adopted notation by dropping
the time argument in all quantities.

Paper Organization: In Section II, full-order models
for droop-, VSM-, and dVOC-based GFM inverters are
overviewed, whereas the full-order model for electrical power
networks is presented in Section III. Reduced-order models for
GFM inverters and electrical power networks are presented in
Section IV. Numerical results that compare the response of
the reduced-order models with those of the full-order models
are presented in Section V. Concluding remarks are given in
Section VI.

II. THE GRID-FORMING INVERTER MODEL

In this section, we present averaged full-order dynamical
models for the GFM inverter; these are developed in detail and
validated in, e.g., [3], [6], [26], [29]. They include mathemat-
ical models for a current-reference limiter, an LCL filter, two
proportional-integral (PI) controllers, and a primary controller.
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Fig. 1: Schematic diagram of the averaged full-order GFM-
inverter model. Inverter control variables and LCL filter
variables are represented in the dq and DQ reference frames,
respectively.

The current-reference limiter serves to prevent over-current
conditions, the LCL filter suppresses switching-frequency rip-
ple at the output, and the proportional-integral (PI) controllers
regulate the inverter output current and voltage across the
filter capacitor. The primary controller governs the response
of the inverter voltage magnitude and frequency references
to deviations in output power (measured at the capacitive
terminals of the LCL filter, in our implementation). In this
paper, we consider droop, VSM, and dVOC primary controls
(see [30] for detailed descriptions of each of these).

A schematic representation of the models, in dq and DQ
frames, is depicted in Fig. 1. The GFM inverter model is
presented in per-unit form (see, e.g., [31, p. 75] for details),
and the inverter rated three-phase power, rated line-to-line
voltage (RMS), and nominal frequency, denoted by sb [VA],
eb [V], and ω0 [rad s−1], respectively, are utilized as base
quantities. Table I summarizes the normalized parameters,
their units, and their respective base values.2

A. The Current Limiter, PI Controllers, and LCL filter

Let i′i and i′g denote the inverter- and grid-side currents of
the filter, respectively, and let e′ and v′ respectively denote the
capacitor voltage and the voltage of the bus at which the GFM
inverter is connected. The voltage magnitude and frequency
references for the GFM inverter are denoted by E◦ and ω◦,
respectively, state variables of the PI controllers that regulate
voltage and current are denoted by ϕ′′ and γ′′, respectively,

2The inertia constant is normalized to s2 rad−1, not to per unit. This is
consistent with the units of the inertia coefficient 2H

ω0
that is used in per-unit

synchronous-machine models. (See, e.g., the inertia constant defined in [31,
pp. 128–136].) In a similar fashion, the frequency-droop coefficient and the
damping coefficient are both normalized to s rad−1, not to per unit.

TABLE I: Normalized model parameters for droop-, VSM-,
and dVOC-based GFM inverters.

Symbol Description Unit Base Actual
value unit

ω0
nominal

rad s−1
frequency

ωc
cut-off

rad s−1
frequency

N/A N/A

ψ
rotation angle

radparameter

imax
peak current pu sb

√
2

eb
√
3

Alimit

li
inverter-side pu

e2b
sbω0

H
inductance

lg
grid-side puinductance

c
filter pu

sb
e2
b
ω0

Fcapacitance

ri
inverter-side pu

e2b
sb

Ω

resistance

rg
grid-side puresistance

ka anti-windup gain pu

kPi
proportional gain pu(current control)

kIi
integral gain pu

e2bω0

sb
F−1(current control)

κ1
synchronization pugain

kPv
proportional gain pu

sb
e2
b

Ω−1
(voltage control)

kIv
integral gain pu

sbω0

e2
b

H−1
(voltage control)

κ2
voltage-magnitude pu

3ω0

2e2
b

rad s−1 V−2
control gain

mf
inertia

s2 rad−1 sb
ω0

F sV2
constant

df
frequency droop

s rad−1

sb FV2
coefficient

dd
damping

s rad−1
coefficient

dv
voltage droop pu sb

ebω0
FVcoefficient

kPθ
proportional pu ω0

eb
rad s−1 V−1

gain (PLL)

kIθ
integral pu ω2

0
eb

rad2 s−2 V−1
gain (PLL)

and the corresponding controller outputs are denoted by i′′r
and u′r, respectively.

1) Current Limiter: As shown in Fig. 1, the current-
reference limiter acts on the output of the voltage controller,
i′′r , and generates a revised (limited) reference for the current
controller, denoted by ĩ′′r , as follows:

ĩ′′r = min

(
1,
imax

∥i′′r ∥2

)
i′′r , (3)

where imax denotes the maximum permitted value of
∥i′′r ∥2 [13]. To ensure that equations constituting the grid-
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forming inverter model are continuously differentiable func-
tions of their arguments (as described in [32, p. 2], this is
a regularity condition for model-order reduction via singular
perturbation analysis), in this paper, we employ the following
smooth approximation of (3):

ĩ′′r = ρi′′r , (4a)

where

ρ = −ε ln
(
exp

(
− 1

ε

)
+ exp

(
− imax

ε∥i′′r ∥2

))
; (4b)

one can check that ρ → min
(
1, imax

∥i′′r ∥2

)
as ε → 0 (see [12]

for details).
2) PI Controllers: Given (4), the dynamics of the PI

controllers can be described by

dϕ′′

dt
= ω0(e1E

◦ − T(δ)e′) + ω0ka(ρ− 1)i′′r , (5a)

i′′r = kPv(e1E
◦ − T(δ)e′) + kIvϕ

′′ +T(δ)i′g

− ω◦

ω0
cT(δ + π

2 )e
′, (5b)

dγ′′

dt
= ω0(ρi

′′
r − T(δ)i′i), (5c)

u′r = kPi(ρT(−δ)i′′r − i′i) + kIiT(−δ)γ′′ + e′

− ω◦

ω0
liT(

π
2 )i

′
i, (5d)

where kPv, kPi denote proportional gains for the PI controllers
that regulate voltage and current, respectively, kIv, kIi denote
their corresponding integral gains, ka denotes the integrator
anti-windup gain of the PI controller that regulates voltage, and
c and li denote the capacitance and inverter-side inductance,
respectively, of the LCL filter.

3) LCL Filter: Suppose the inverter synthesizes its refer-
ence voltage, u′r, exactly.3 Then, the LCL filter dynamics are
described by

li
ω0ri

di′i
dt

=
( li
ri
T(π2 )− I

)
i′i +

1

ri
(u′r − e′), (6a)

c

ω0

de′

dt
= cT(π2 )e

′ + (i′i − i′g), (6b)

lg
ω0rg

di′g
dt

=
( lg
rg

T(π2 )− I

)
i′g +

1

rg
(e′ − v′), (6c)

where ri denotes the inverter-side resistance, and rg and lg
respectively denote the sum of resistive and inductive elements
(from the filter and transmission line) on the grid side.

B. The Primary Controller

The inputs of the primary controller are the capacitor
voltage, e′, the grid-side current, i′g, the bus voltage, v′, the
reference active- and reactive-power injecions obtained from a
secondary/tertiary control scheme, which we denote by p⋆ and
q⋆, respectively, and the reference voltage magnitude obtained
from a tertiary control scheme, which we denote by E⋆. The

3This assumption is the basis for developing the inverter averaged model;
see [29, pp.32–38].

outputs of the primary controller are the reference voltage
magnitude, E◦, and the reference angular frequency, ω◦.

To describe primary-control dynamics, we leverage a
generic primary-control model [33], that under certain para-
metric assumptions yields the governing equations correspond-
ing to droop, VSM, or dVOC. Let p and q denote the active-
and reactive-power injections at the capacitor terminals of the
LCL filter, i.e.,

p := (e′)⊤i′g, q := (e′)⊤T(−π
2 )i

′
g, (7a)

and pm and qm denote their low-pass filtered versions, re-
spectively. Then, the dynamics of this generic primary-control
model are described by:

dδ

dt
= ω◦ − ω0, (7b)

τf
dω◦

dt
=

1

ff(E◦)
e
⊤
1 T(ψ − π

2 )

[
p⋆ − pm
q⋆ − qm

]
+ ω0 − ω◦ + κdα̇,

(7c)

τv
dE◦

dt
=

1

fv(E◦)
e
⊤
2 T(ψ − π

2 )

[
p⋆ − pm
q⋆ − qm

]
+ fe(E

◦, E⋆),

(7d)

τp
dpm
dt

=− pm + p, (7e)

τq
dqm
dt

=− qm + q, (7f)

1

ω0

dη

dt
= e

⊤
2 T(α)T(δ)v

′, (7g)

1

ω0

dα

dt
=
kPθ

ω0
η̇ + kIθη, (7h)

where τf , τv, τp, τq, κd, ff(E◦), fv(E◦), and fe(E
⋆, E◦)

denote generic parameters or functions, whose values depend
on the adopted primary-control strategy, i.e., droop, VSM, or
dVOC; see Table II for the details.

The expressions in (7b)–(7d) outline the relationship be-
tween reference voltage (phase, magnitude, and frequency) and
output power; (7e)–(7f) capture the low-pass filtering action
for the measured active- and reactive-power values; and (7g)–
(7h) capture the dynamics of a synchronous reference-frame
phase-locked loop (SRF PLL) that is leveraged in the VSM
control strategy to compute the mismatch between the bus
frequency and the inverter frequency (this mismatch is cap-
tured by the term α̇ in (7c)). In (7c)–(7d), ψ ∈ [0, 2π] denotes
a rotation angle that in steady state determines the nature
of the tradeoff between active power and reactive power in
the voltage and frequency response of the GFM inverter. In
particular, ψ = π

2 imposes a strong correlation between active
power and frequency, and between reactive power and voltage;
while ψ = 0 does the polar opposite (see, e.g., [26], [33] for
details).

The droop control strategy utilizes low-pass-filtered mea-
surements of the active- and reactive-power injections to
compute references for angular frequency and voltage mag-
nitude. The reference frequency (voltage) is linearly offset
from the nominal-frequency (reference-voltage) by a weighted
fraction of the active- and reactive-power deviations from their
references, as determined by rotation angle ψ.
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TABLE II: Parameterizations of the generic primary control
model that yield droop, VSM, and dVOC dynamics; see
Table I for definitions and base values of the parameters.

generic-model parameterization
τf τv τp τq κd ff(x) fv(x) fe(x, y)

droop 0 0 1
ωc

1
ωc

0 df dv x− y

VSM mf
df

0 0 1
ωc

dd
df

df dv x− y

dVOC 0 1
ω0

0 0 0 x2

ω0κ1

x
κ1

κ2(x2

−y2)y

The VSM control strategy utilizes unfiltered measurements
of the active power injection and low-pass filtered measure-
ments of the reactive-power injection to compute the refer-
ence angular frequency and voltage magnitude. The voltage-
magnitude reference is computed identically as in droop
control, but for computing the frequency reference, an inertial
term (that acts on local frequency) and damping term (that
acts on the frequency difference between the inverter and the
bus so as to emulate the effect of the damper windings in
a synchronous generator) are introduced. The latter requires
estimating the frequency of the bus, for which an SRF PLL is
leveraged (η and α denote the PLL internal state variable and
output phase, respectively).

The dVOC strategy utilizes unfiltered measurements of the
active- and reactive-power injections to compute reference
values for angular frequency and voltage-magnitude. The fre-
quency reference is offset from its nominal value by a fraction
of the active- and reactive-power deviations from their refer-
ences as determined by rotation angle, ψ; notably, this fraction
is a nonlinear function of the voltage-magnitude reference.
Distinct from droop and VSM, dVOC includes dynamics for
the reference voltage-magnitude E◦; this involves nonlinear
terms to penalize deviations away from the reference voltage-
magnitude E⋆, as well as deviations of active and reactive
power from their references.

III. THE ELECTRICAL POWER NETWORK MODEL

In this section, we present a graph-theoretic model and a
dynamical model for the electric power network. Afterwards,
we present a model that describes the terminal relations
between the GFM inverter and the network bus it is connected
to. We consider b > 1 buses, indexed by the elements in the
set B = {1, 2, . . . , b}, interconnected via m transmission lines,
indexed by the elements in the set L = {1, 2, . . . ,m}. Without
loss of generality, we assume there is at most one transmission
line connecting each pair of buses.

A. Graph-theoretic Network Model

Assign an arbitrary direction for the positive flow of power
along each transmission line. Then, the topology of the elec-
trical network with the chosen orientation can be described
by a connected directed graph G = (V, E), with V = B
denoting the set of buses, and E ⊂ V × V \ {(k, k) : k ∈ V}
denoting the set of transmission lines so that (k, j) ∈ E

if buses k and j are electrically connected, with the flow
of power from bus k to bus j assigned to be positive. Let
L denote a one-to-one mapping from E to L so that, for
each (k, j) ∈ E , there exists a unique ℓ ∈ L that satisfies
ℓ = L(k, j). Then, we can define a node-to-edge incidence
matrix, M = [mkℓ] ∈ {−1, 0, 1}|B|×|L|, as follows:

mkℓ = 1, if ℓ = L(k, j), (k, j) ∈ E ,
mkℓ = −1, if ℓ = L(j, k), (j, k) ∈ E ,
mkℓ = 0, otherwise.

B. Full-order Dynamical Network Model

Consider an electrical network with short transmission lines,
rated three-phase power sb,0, and rated voltage eb,k for bus
k ∈ B.4 We represent the network parameters and variables
in a per-unit system with base quantities ω0, sb,0, and eb,k at
each bus k ∈ B. The circuit model for each line ℓ ∈ L is the
series connection of a resistance, rℓ, and inductance, lℓ, both
in per unit. Furthermore, we suppose the lines have identical
inductance-to-resistance ratio, i.e.,

l1
r1

=
l2
r2

= · · · = l|L|
r|L|

.

The time constant associated with the line dynamics is denoted
by τt, and the phase angle associated with the line impedance
is denoted by φ; these are defined as follows:

τt =
lℓ
ω0rℓ

, ∀ℓ ∈ L, φ = arctan (τtω0) . (8)

Let v′k and i′k denote the voltage and current injections at
bus k ∈ B, respectively, and let f ′ℓ denote the line current
flowing across transmission line ℓ. Then, the dynamics of the
line current and the current injection are described by:

τt
df ′ℓ
dt

=
(
τtω0T(

π
2 )− I

)
f ′ℓ +

1

rℓ

∑
k∈B

v′kmkℓ, (9a)

i′k =
∑
ℓ∈L

mkℓf
′
ℓ. (9b)

Multiplying both sides of (9a) by mkℓ and summing over ℓ
yields

τt
d

dt

(∑
ℓ∈L

mkℓf
′
ℓ

)
=
(
τtω0T(

π
2 )− I

)∑
ℓ∈L

mkℓf
′
ℓ

+
∑
ℓ∈L

mkℓ
1

rℓ

∑
k∈B

v′kmkℓ.

Substituting (9b) in the above expression, we see that the
dynamics of the current injection at bus k are

τt
di′k
dt

=
(
τtω0T(

π
2 )− I

)
i′k +

∑
ℓ∈L

mkℓ
1

rℓ

∑
k∈B

v′kmkℓ. (10)

Introduce the following matrices

v′B =
[
v′1, v

′
2, . . . , v

′
|B|
]
∈ R

2×|B|,

i′B =
[
i′1, i

′
2, . . . , i

′
|B|
]
∈ R

2×|B|,

4A transmission line is typically categorized as short if its effective length
is less than 50 miles (80 km) [31, p. 208].
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R = diag
(
r1, r2, . . . , r|L|

)
∈ R

|L|×|L|.

Then, we can rewrite (10) in matrix form as follows:

τt
di′B
dt

=
(
τtω0T(

π
2 )− I

)
i′B + v′BMR−1M⊤. (12)

Remark 1. The general structure of the above model for
current dynamics holds for the case of lossless transmission
lines as well. In this setting, we collect the inductances of all
lines in the matrix

L = diag
(
l1, l2, . . . , l|L|

)
∈ R

|L|×|L|.

Then, it follows that the network dynamics can be described
by

1

ω0
L
di′B
dt

= LT(π2 )i
′
B + v′BMM⊤. (13)

C. Network and Inverter Terminal Relations

Next, we present the relation between the current injection at
bus k and the grid-side currents of all GFM inverters connected
to bus k, with all relevant variables and parameters translated
to a common per-unit system. Consider nk ≥ 1 GFM inverters
whose output terminals are connected to bus k of an electrical
power network with dynamics described by (12). Suppose they
have heterogeneous power ratings and homogeneous voltage
ratings (since they are parallel connected, we can assume they
have the same voltage ratings). The dynamics of each GFM
inverter can be described by (4)–(7), with each GFM inverter
indexed by superscript j ∈ {1, . . . , nk}. Let eb,k denote the
common voltage rating of all nk inverters, let s(j)b,k denote
the rated three-phase power of inverter j ∈ {1, . . . , nk}, and
let sb,0 denote the rated three-phase power of the electrical
network. We make the following assumption on the per-unit
model of each GFM inverter.

Assumption 1. When a group of GFM inverters of the same
type are parallel-connected, their per-unit models are identical
when: i) the base quantities for each GFM inverter are its
rated frequency, rated power, and rated voltage, and ii) they
are all initialized with identical per-unit values.5

Suppose the droop-, VSM-, and dVOC-based GFM inverters
connected to bus k are indexed by sets Dk, Mk, and Ok,
respectively. Then, in the per-unit system with base quantities
ω0, sb,0, and eb,k, the grid-side current of GFM inverter j, and

the net current injection at bus k, are given by
s
(j)
b,k

sb,0
i
′(j)
g,k and

1
sb,0

∑nk

j=1 s
(j)
b,ki

′(j)
g,k , respectively; thus, from Assumption 1:

i′k = 1
sb,0

( ∑
j∈Dk

s
(j)
b,ki

′(j)
g,k +

∑
j∈Mk

s
(j)
b,ki

′(j)
g,k +

∑
j∈Ok

s
(j)
b,ki

′(j)
g,k

)
=

∑
j∈Dk

s
(j)
b,k

sb,0
i
′(D)
g,k +

∑
j∈Mk

s
(j)
b,k

sb,0
i
′(M)
g,k +

∑
j∈Ok

s
(j)
b,k

sb,0
i
′(O)
g,k ,

(14)

5This assumption implies that parameters of each GFM inverter are
designed by multiplying prespecified baseline values by scaling factors that
are proportional to the inverter voltage, frequency, and power ratings (see
e.g., [34]).

where i
′(D)
g,k , i′(M)

g,k , and i
′(O)
g,k denote the common grid-side

currents of all droop-, VSM-, and dVOC-based GFM inverters
connected to bus k, respectively.

Remark 2. Currents i′k and i′(j)g,k , are represented in per-unit
systems that have the same base voltage and base frequency,
but have base powers sb,0 and s(j)b,k, respectively.

IV. REDUCED-ORDER MODELS

In this section, we present the main results of this work,
namely, reduced-order models for a diverse and networked
group of GFM inverters that preserve the impact of the
current-reference limiters. The models are developed via a
three-step procedure: (i) for the electrical power network, we
apply time-domain Kron reduction, (ii) for parallel-connected
GFM inverters we perform dynamic aggregation, and (iii) for
the aggregated groups of GFM inverters, we employ singu-
lar perturbation analysis. We wish to preserve the network
current dynamics during the model-order reduction process.
The resulting reduced-order models are: 5th-order models for
GFM inverters and aggregations, and an algebraic model that
describes bus voltages relations for the Kron-reduced network.

A. Network Model Reduction: Time-domain Kron-reduction

Consider the electric power network with dynamics de-
scribed by (12); each bus has one, several, or no GFM inverters
connected to it. Let I denote the set of buses having one or
more GFM inverters connected to them, and let N denote
the set of buses having no GFM inverters connected to them.
Partition M ∈ R|B|×|L|, i′B ∈ R2×|B|, and v′B ∈ R2×|B| as
follows:

M =

[
MI
MN

]
, i′B =

[
i′I i′N

]
, v′B =

[
v′I v′N

]
, (15)

where variables with subscripts I and N denote sub matri-
ces/vectors whose entries correspond to buses indexed by the
elements in the set I and N , respectively. In what follows, we
substitute partitioned versions of M , i′B, and v′B in (12), while
recognizing that buses indexed by N have no GFM inverters
connected to them, so that i′N =

di′N
dt =

[
O, O

]⊤
. This yields

the following dynamics for current injections at buses indexed
by the elements in I:

τt
di′I
dt

=
(
τtω0T(

π
2 )− I

)
i′I + v′IMIR

−1M⊤
I

+ v′NMNR
−1M⊤

I , (16)

and the following algebraic expression for voltages at buses
indexed by the elements in N :

v′N = −v′IMIR
−1M⊤

N
(
MNR

−1M⊤
N
)−1

. (17)

Note that the matrix MNR−1M⊤
N is strictly diagonally

dominant, and is therefore invertible (see e.g., [35, Corol-
lary 5.6.17]). Substituting (17) into (16), we can write:

τt
di′I
dt

=
(
τtω0T(

π
2 )− I

)
i′I + v′I(MIR

−1M⊤
I

−MIR
−1M⊤

N
(
MNR

−1M⊤
N
)−1

MNR
−1M⊤

I ). (18)
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Following from [28, Lemma 2.1], there exists a directed graph
G̃ =

(
I, Ẽ

)
with incidence matrix M̃ ∈ {−1, 0, 1}|I|×|Ẽ| and

diagonal matrix R̃ ∈ R|Ẽ|×|Ẽ| such that

M̃R̃−1M̃⊤ =MIR
−1M⊤

I

−MIR
−1M⊤

N
(
MNR

−1M⊤
N
)−1

MNR
−1M⊤

I .
(19)

Substituting (19) into (18), it follows that the dynamics of the
Kron-reduced network model are given by

τt
di′I
dt

=
(
τtω0T(

π
2 )− I

)
i′I + v′IM̃R̃−1M̃⊤. (20)

Remark 3. There may not exist unique matrices M̃ and R̃−1

that satisfy the expression in (19). To address this, we utilized
the following iterative approach to guarantee fewer/same
number of transmission lines in the Kron-reduced network.
The approach includes the following steps:
1. Start with i = 0, and generate an incidence matrix M̃ [i]

that is based on a complete graph
2. Use (19) to solve for R̃−1[i] and identify the diagonal

elements of R̃−1[i] that are zero (or close to zero) and
their corresponding edges

3. If there are no such diagonal elements, then adopt M̃ [i]
and R̃−1[i] as the solutions, otherwise set i = i + 1 and
go to the next step

4. Delete edges identified in step 2 and create M̃ [i] based on
the resulting graph

5. Go to step 2

Remark 4. Comparing (20) with (12), it is evident that the
topology of the Kron-reduced network is captured by the
incidence matrix, M̃ . The Kron-reduced network comprises
|I| ≤ |B| buses that are interconnected via |Ẽ | ≤ |E| trans-
mission lines, with each bus having either one or more GFM
inverters connected to it. In effect, the Kron-reduced network
only preserves buses that have an inverter connected to them,
and it has fewer (or same) number of transmission lines
compared to the originating network. Furthermore, trans-
mission lines in the Kron-reduced network are short and
have homogeneous inductance-to-resistance ratios, with their
resistances and inductances specified in the diagonal matrices
R̃ and L̃ = τtω0R̃, respectively.

B. Inverter Model Reduction: Dynamic Aggregation

Consider three parallel-connected GFM inverters that are
based on droop, VSM, and dVOC, respectively. Suppose that
they have power ratings, s(D)

b,k , s(M)
b,k , and s

(O)
b,k , respectively,

and the same voltage rating. Also, suppose that, when their
full-order models are per-unitized by using their respective
rated frequency, rated power, and rated voltage, the grid-side
currents of the droop-, VSM-, and dVOC-based GFM inverters
are i′(D)

g,k , i′(M)
g,k and i

′(O)
g,k , respectively. Then, based on (14),

the net current injection at bus k is given by

i′k =
s
(D)
b,k

sb,0
i
′(D)
g,k +

s
(M)
b,k

sb,0
i
′(M)
g,k +

s
(O)
b,k

sb,0
i
′(O)
g,k . (21)

Comparing (14) and (21), and setting

s
(D)
b,k =

∑
j∈Dk

s
(j)
b,k, s

(M)
b,k =

∑
j∈Mk

s
(j)
b,k, s

(O)
b,k =

∑
j∈Ok

s
(j)
b,k,

it follows that, under Assumption 1, a group of parallel-
connected GFM inverters of the same type can be represented
by an aggregate full-order model whose rated power is equal
to the total power rating of the GFM inverters.

C. Network Model Reduction: Elimination Method

Notice that (20) provides a relation between net current
injection i′k and bus voltage v′k. However, we will find that,
by applying the elimination method, (20), (21), and (6c) can
be used to develop an algebraic expression that relates the bus
voltages to the grid-side currents and the voltage across each
LCL filter capacitance; we discuss this next.

Taking advantage of the model aggregation results in Sec-
tion IV-B, we define the following term which will be used
during the model-order reduction steps

e′k =
s
(D)
b,k

sb,0
e
′(D)
k +

s
(M)
b,k

sb,0
e
′(M)
k +

s
(O)
b,k

sb,0
e
′(O)
k , (22)

where D, M, and O are used to identify variables/parameters
associated with aggregate models for droop-, VSM-, and
dVOC-based GFM inverters, respectively. We make the fol-
lowing assumption on the grid-side resistances and inductances
of LCL filters connected to bus k.

Assumption 2. When models for parallel-connected GFM
inverters (based on droop, VSM, and/or dVOC) are per-
unitized using their respective rated frequency, rated power,
and rated voltage as base quantities, the resulting per-unit
values for grid-side resistances (inductances) of all the GFM
inverters are identical.

From (6c), (21), (22), and Assumption 2, we have that the
net current injection at bus k ∈ I is described by

lg,k
ω0rg,k

di′k
dt

=
( lg,k
rg,k

T(π2 )− I

)
i′k +

1

rg,k
(e′k − σkv

′
k), (23)

where, in per-unit, lg,k and rg,k denote the common grid-side
inductance and resistance of the GFM inverters, and

σk =
s
(D)
b,k

sb,0
+
s
(M)
b,k

sb,0
+
s
(O)
b,k

sb,0
. (24)

Introduce the following matrices

e′I =
[
e′1, . . . , e

′
|I|
]
∈ R

2×|I|, (25a)

Λg = diag
(

lg,1
ω0,rg,1

, . . . ,
lg,|I|

ω0rg,|I|

)
∈ R

|I|×|I|, (25b)

Σ = diag
(
σ1, . . . , σ|I|

)
∈ R

|I|×|I|, (25c)

Rg = diag
(
rg,1, . . . , rg,|I|

)
∈ R

|I|×|I|. (25d)

Then, from (23) and (25), it follows that the dynamics of
current injections into the electrical network, at buses indexed
by the set I, can be described by

di′I
dt

Λg = ω0T(
π
2 )i

′
IΛg − i′I + (e′I − v′IΣ)(Rg)

−1. (26)

Using (26) to solve for di′I
dt − ω0T(

π
2 )i

′
I , and appropriately

substituting the result into (20), bus voltages in the Kron-
reduced network model can be expressed as the following
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linear function of current injections and capacitor voltages:

v′I =

(
i′I
( 1

τt
I− Λ−1

g

)
+ e′I(RgΛg)

−1

)
Π−1, (27a)

where

Π =
( 1

τt
M̃R̃−1M̃⊤ +Σ(RgΛg)

−1
)
∈ R

|I|×|I| (27b)

is strictly diagonally dominant, and therefore invertible, and
i′I , e′I are matrices whose columns: (i) represent weighted
sums of grid-side currents and capacitor voltages, respectively
(see (21) and (22)), (ii) are balanced three-phase signals
represented in the DQ reference frame, and (iii) are associated
with each bus of the Kron-reduced network.

Remark 5. The result in (27a) presents a relation between
bus voltage, capacitor voltages, and bus current injections.
Its derivation results from the fact that all line currents can
be expressed as functions of the bus current injections. As a
result, the bus voltages, which are functions of line currents
and capacitor voltages, can be expressed in terms of the bus
current injections and capacitor voltages.

D. System Model Reduction: Singular Perturbation
Thus far, we have established full-order dynamics of GFM

inverters (4)–(7), showed how an aggregate full-order model
can be developed for parallel-connected GFM inverters of the
same type, and derived a Kron-reduced algebraic model for
electrical power networks (27). Next, we perform a systematic
model-order reduction on the network and inverter models and
present a reduced-order model for GFM inverters that results
when the network current dynamics are preserved. In addition
to the network current dynamics, the model also captures dy-
namics of the inverter phase, frequency, reference voltage, and
current-reference limiter, as well as the aggregate dynamics
of parallel-connected GFM inverters. A few assumptions and
preliminaries are required, which are spelled out next.

Following from standard parameter values in [22]–[27],
small parameters in the dynamical models can be identified
using the following assumption on the GFM inverter connected
to bus k of the electrical power network:

Assumption 3. There exists a small parameter ϵ, as well as
constants λ1, . . . , λ7 ∈ (0, 1], such that:

τp,k = λ1ϵ, τq,k = λ2ϵ,
ck
ω0

= λ3ϵ,

1
ω0kPθ,k

= λ4ϵ,
li,k

ω0ri,k
= λ5ϵ,

ri,k+kPi,k

ω0kIi,k
= λ6ϵ,

kPv,k

ω0kIv,k
= λ7ϵ.

The small parameters listed in Assumption 3 represent time
constants and gains associated with the primary controller,
LCL filter, and PI controller, whose values are a result of
controller and filter design specifications. We also require the
following assumption on frequency of the GFM inverter(s)
connected to bus k of the network.

Assumption 4. There exists a variable λ8 ∈ (−1, 1) such that
the angular frequency satisfies the constraint

ωk − ω0

ω0
= λ8ϵ.

Primary control strategies of GFM inverters are typically
tuned to ensure that a 1 per-unit change in output power
injection results in less than 0.05 per-unit change in the angular
frequency of the inverter. As a result, GFM inverters would
typically satisfy Assumption 4.

The following steps, which are based on singular pertur-
bation analysis as described in [32, pp. 2–22], are used to
perform model-order reduction of the full-order dynamical
models presented in Sections II and IV-C:
1. The system of equations constituting the GFM inverter

models and the Kron-reduced network model are expressed
compactly by substituting the algebraic expressions into the
differential equations, and the resulting system of equations
are represented in the standard singular-perturbation form
(see Appendix C for details):

ẋ = f (x, z, ϵ) , ϵż = g (x, z, ϵ) , (28)

where f (·, ·, ·) and g (·, ·, ·) are continuously differentiable
functions of their arguments, x =

[
x⊤1 , . . . , x

⊤
|I|
]⊤

, z =[
z⊤1 , . . . , z

⊤
|I|
]⊤

, xk =
[
(x

(D)
k )⊤, (x

(M)
k )⊤, (x(O)

k )⊤
]⊤

,

zk =
[
(z

(D)
k )⊤, (z(M)

k )⊤, (z(O)
k )⊤

]⊤
, with x

(j)
k =

[
δ
(j)
k ,

ω◦
k
(j), E◦

k
(j), (i

′(j)
g,k )

⊤]⊤, z(j)k =
[
(p

(j)
m,k)

⊤, (q(j)m,k)
⊤, η(j)k ,

α
(j)
k , (i

′(j)
i,k )⊤, (e′(j)k )⊤, (ϕ′′(j)k )⊤, (γ′′(j)k )⊤

]⊤
, for j ∈

{D,M,O}.
2. The reduced-order model is derived from (28) by: (i) setting
ϵ = 0

(
this means all parameters listed in Assumptions 3

and 4 are set to zero) (ii) solving for z as a function of
x, and (iii) substituting the resulting expression for z into
ẋ = f (x, z, ϵ).

Define the following two matrices:

A1,k(x) =

 x
c2kk

2
a,k(x−1)2+x2 − ckka,k(x−1)

c2kk
2
a,k(x−1)2+x2

ckka,k(x−1)

c2kk
2
a,k(x−1)2+x2

x
c2kk

2
a,k(x−1)2+x2

 , (29a)

A2,k(x) =

− c2kka,k(x−1)

c2kk
2
a,k(x−1)2+x2 − ckx

c2kk
2
a,k(x−1)2+x2

ckx
c2kk

2
a,k(x−1)2+x2 − c2kka,k(x−1)

c2kk
2
a,k(x−1)2+x2

 . (29b)

Then, the reduced-order dynamical model for a group of
nk ≥ 1 parallel-connected GFM inverters of the same type,
connected to bus k ∈ I of an electrical network is depicted in
Fig. 2 and is given by:

dδk
dt

= ω◦
k − ω0, (30a)

τf,k
dω◦

k

dt
=

1

ff,k(E◦
k)
e
⊤
1 T(ψk − π

2 )

[
p⋆k − e′k

⊤
i′g,k

q⋆k − e′k
⊤
T(−π

2 )i
′
g,k

]
+ ω0 − ω◦

k, (30b)

τv,k
dE◦

k

dt
=

1

fv,k(E◦
k)
e
⊤
2 T(ψk − π

2 )

[
p⋆k − e′k

⊤
i′g,k

q⋆k − e′k
⊤
T(−π

2 )i
′
g,k

]
+ fe,k(E

⋆
k , E

◦
k), (30c)

lg,k
ω0

di′g,k
dt

=
(
lg,kT(

π
2 )− rg,kI

)
i′g,k + e′k − v′k, (30d)

e′k =
ρk
ck

T(π2 − δk)A2,k(ρk)e1E
◦
k
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Fig. 2: Reduced-order model for GFM inverters connected to
an electrical power network.

− 1

ck
T(π2 )(I− ρkA1,k(ρk))i

′
g,k, (30e)

0 = ρk + ε ln

(
exp

(
− 1

ε

)
(30f)

+ exp

(
−
imax

√
c2kk

2
a,k(ρk − 1)2 + ρk2

ε∥cke2E◦
k +T(δk)i′g,k∥2

) ,

and from (27), the reduced-order model for the network is

v′I =

(
i′I
(
I
1
τt

− Λ−1
g

)
+ e′I(RgΛg)

−1

)
Π−1, (30g)

where, Π is described by (27b), the k-th column of matrix v′I
is v′k, and the k-th column of matrices i′I and e′I are described
by (21) and (22), respectively.

Remark 6. Consider the special/simplifying case where the
current-reference limiter is inactive. In this case, we note
that ρk = 1, and A1,k(ρk) = A1,k(1) = I, A2,k(ρk) =

A2,k(1) =

[
0 −ck
ck 0

]
. The dynamics described by (30b)–

(30c) are preserved, but the expressions in (30e) and (30f)
transform to

e′k = T(−δk)e1E◦
k , ρk = 1. (31)

V. NUMERICAL RESULTS

We provide two sets of numerical case studies to validate
the approach. Simulation results for a modified IEEE 14-bus
network with aggregations of inverters at some buses (see
Fig. 3) provide an in-depth examination of the accuracy of the
original and reduced-order models through large-signal tran-
sients that activate current-limiting action. Simulation results
for a modified IEEE 118-bus network (see Fig. 5) demonstrate
scalability of the approach without compromising accuracy to
large networks.

In each case we will note a marked reduction in com-
putation effort since the reduced-order models are described
by fewer dynamic states at the network and device level.

Let ID/IM/IO respectively denote the set of all buses with
droop/VSM/dVOC-based GFM inverters connected to them.
At bus k, let Dk/Mk/Ok denote the sets of all parallel-
connected GFM inverters based on droop/VSM/dVOC, respec-
tively. Based on the analytical results presented in this paper,
we expect that at each bus comprising droop/VSM/dVOC-
based GFM inverters, our proposed approach will reduce the
model-order by a factor of 13|Dk|

3 / 15|Mk|
4 /3|Ok|, respectively.

Note also from Remark 3 that the approach adopted for time-
domain model reduction targets a reduction in the number of
lines in the reduced network, thereby guaranteeing computa-
tional savings on that front as well. (It is not straightforward
to precisely quantify the reduction in the number of states in
this case since it is network and parameter dependent.)

A. The IEEE 14-bus network

We consider the IEEE 14-bus network depicted in Fig. 3.
The electrical power network comprises buses indexed by
elements in the set I = {1, 2, . . . , 5}, which have at least
one GFM inverter connected to them, buses indexed by the
elements in the set N = {6, 7, . . . , 14}, which have no GFM
inverters or loads connected to them, and lines indexed by the
elements in the set L = {1, 2, . . . , 20}, which interconnect the
buses. Parameter values are provided in the Appendix.

Time-domain Kron reduction is employed to reduce the
IEEE 14-bus system to a 5-bus system with buses indexed by
the elements in the set I = {1, 2, . . . , 5} and lines indexed by
the elements in the set L̃ = {1, 2, . . . , 10}. (Also depicted in
Fig. 3.) Full-order models for the droop-, VSM-, and dVOC-
based GFM inverters are reduced from 13th-, 15th-, and 12th-
order models to 2rd-, 3th- and 3th-order models, respectively,
and full-order models for the parallel-connected GFM inverters
at buses 3, 4, and 5 of the 14-bus system are reduced from
56th-, 36th-, and 26th-order models to 5th-, 3rd, and 2nd-
order models, respectively. Table III lists the total number of
dynamic states corresponding to the network and the inverters
in the original and reduced-order models.

Figure 4 illustrates the active- and reactive-power outputs,
current magnitude, voltage magnitude, and frequency at buses
1–5 over a 15 s period during which the active- and reactive-
power references of the inverters, p⋆k, q⋆k, k ∈ {1, 2, 3, 4, 5},
are varied as indicated by the blue lines in the pk and qk plots.
(If more than one GFM inverter is connected to a bus, e.g.,
on bus 3, then every GFM inverter receives an equal share
of the power setpoint.) Current limits for each of the buses
are shown in dashed blue lines in the current-waveform plots.
Results corresponding to the full-order IEEE 14-bus network
are plotted as red-colored lines; those corresponding to the
reduced system are shown as black lines. The match between
the two establishes the validity of the reduced-order models.
The match holds even during periods when the current limits
are breached and the current limiters are active. Table III also
lists the computation time for the two simulation runs. We note
a drastic reduction in computation time for the reduced-order
model since the number of states are much lower.
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(a) The IEEE 14-bus system (b) The reduced 5-bus system

dynamic aggregation
singular perturbation

Fig. 3: The IEEE 14-bus test system and its equivalent Kron-reduced model. The test system comprises 14 buses ( ), and
20 lines ( ) whereas the Kron-reduced model comprises 5 buses ( ), and 10 lines ( ). Notice also that the reduced-order
network involves lower-order models of inverter dynamics for each primary-control type.

Fig. 4: Numerical simulation results of the IEEE 14-bus network and the Kron-reduced network, visualizing the active power
exchange, reactive power exchange, current magnitude, voltage magnitude and frequency at every boundary bus. Measurements
of the full-order IEEE 14-bus network are displayed as red-colored lines, measurements of the Kron-reduced network as black-
colored lines. Active and reactive power set-points, i.e., p⋆ and q⋆, are depicted as blue-colored lines.

B. The IEEE 118-bus network

We consider the IEEE 118-bus network depicted in Fig. 5.
The electrical power network comprises buses indexed by ele-
ments in the set I = {1, 2, . . . , 25}, which have a single GFM
inverter connected to them, buses indexed by the elements in
the set N = {26, 27, . . . , 118}, which have no GFM inverters
or loads connected to them, and lines indexed by the elements
in the set L = {1, 2, . . . , 186}, which interconnect the buses.
Parameter values are provided in the Appendix.

Time-domain Kron reduction is employed to reduce the
IEEE 118-bus system to a 25-bus system with buses indexed
by the elements in the set I = {1, 2, . . . , 25} and lines indexed
by the elements in the set L̃ = {1, 2, . . . , 151}. (Also depicted
in Fig. 5.). Table IV lists the total number of dynamic states
corresponding to the network and the inverters in the original
and reduced-order models.

Figure 6 illustrates the active power outputs, current mag-
nitude, and voltage magnitude at buses 1–25 over a 4 s period
during which the active power references of the inverters,
i.e., p⋆k, k ∈ {1, . . . , 25}, are varied as indicated by the blue
lines in the pk plots. Results corresponding to the full-order
IEEE 118-bus network are plotted as red-colored lines; those
corresponding to the reduced system are shown as black-
colored lines. The match between the two establishes the

validity of the reduced-order models. Table IV also lists the
computation time for the two simulation runs. Again, we
obtain a drastic reduction in computation time for the reduced-
order model since the number of states are lower. Broadly, this
result establishes the scalability of the proposed approach.

VI. CONCLUDING REMARKS & FUTURE WORK

This work outlined reduced-order models for grid-forming
inverter-based power networks. Compared to previous efforts
for model reduction, our proposed models retain the network
interactions in the time domain and the effects of the current-
reference limiter in the reduced-order models. The approach
also applies to a wide range of primary-control methods that
have received attention in the GFM space recently. Uniquely,
the reduced-order models preserve structure of the originating
models at the resource and network levels. This makes the
results accessible and readily implementable in simulation
software. Simulation results for the IEEE 14- and 118-bus
networks establish scalability of the proposed approach, and
indicate that the proposed reduced-order models require an
order-of-magnitude less computational effort to produce re-
sults with the same order-of-magnitude accuracy as the full-
order models.

As part of future work, we point out that the results in [36]
can be leveraged to extend the time-domain Kron reduction
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TABLE III: Numerical results: IEEE 14-bus network.

Full-order Reduced
network network

# Dynamic inverter-states 143 15

# Dynamic line-states 60 30

# Total dynamic states 203 45

Total computation time 313.4 s 149.2 s

TABLE IV: Numerical results: IEEE 118-bus network.

Full-order Reduced-order
network network

# Dynamic inverter-states 332 67

# Dynamic line-states 558 453

# Total dynamic states 890 520

Total computation time 325.8 s 159.5 s

method applied for the network dynamics to settings where
the l/r ratios of the lines are not all identical. Application
of the proposed methods to practical utility-scale installations
that involve collections of wind or solar resources and plant
controllers is also a pertinent direction for future work. Finally,
methods proposed for model reduction and dynamic aggrega-
tion could be extended to unbalanced systems.

APPENDIX

A. GFM Inverter Parameters

Following from Assumption 1, all GFM inverters in the
network have the same per-unit values for each parameter.
Accordingly, common model parameters for all GFM inverter
models are: ε = 0.02, imax = 1.2, ka = 0.035, ψ = π/2,
E⋆ = 1, ω0 = 2π60, kPθ = 1, kIθ = 0.0028, li = 0.02,
lg = 0.02, c = 0.11, ri = 0.014, rg = 0.014, kPv = 1.45,
kIv = 10.29, kPi = 0.98, kIi = 0.69, κ1 = 0.003, κ2 = 0.046,
df = 0.8, dv = 25, dd = 0.005, mf = 0.01, ωc = 125.7, with
the subscript “k” omitted to contain notational burden.

1) The IEEE 14-bus network: The rated power and voltages
for the GFM inverters are: sb,1 = 15 kVA, sb,2 = 10 kVA,
s
(1)
b,3 = 4kVA, s(2)b,3 = 5kVA, s(3)b,3 = 6kVA, s(4)b,3 = 7kVA,
s
(1)
b,4 = 4kVA, s(2)b,4 = 5kVA, s(3)b,4 = 6kVA, s(1)b,5 = 4kVA,
s
(2)
b,5 = 5kVA, eb,1 = eb,2 = · · · = eb,5 = 408V.

2) The IEEE 118-bus network: The rated powers and
voltages for the GFM inverters are: sb,1 = 15 kVA, sb,2 =
10 kVA, sb,3 = 4kVA, sb,4 = 5kVA, sb,5 = 6kVA,
sb,6 = 7kVA, sb,7 = 4kVA, sb,8 = 5kVA, sb,9 = 6kVA,
sb,10 = 4kVA, sb,11 = 15 kVA, sb,12 = 10 kVA, sb,13 =
4kVA, sb,14 = 5kVA, sb,15 = 6kVA, sb,16 = 7kVA,
sb,17 = 4kVA, sb,18 = 5kVA, sb,19 = 6kVA, sb,20 =
4kVA, sb,21 = 5kVA, sb,22 = 10 kVA, sb,23 = 4kVA,
sb,24 = 5kVA, sb,25 = 6kVA, eb,1 = eb,2 = · · · = eb,25 =
408V.

B. Network Parameters

1) The IEEE 14-bus network: The rated three-phase power
of the network is sb,0 = 100 MVA, and the time constant
associated with the transmission-line dynamics is τt = 1 ×
10−3 s rad−1. The per-unit line inductances are obtained from
the line parameter data presented in [37] for the IEEE-14 bus
network, and the corresponding line resistances are computed
by dividing the inductances by τtω0.

The per-unit line resistances of the Kron-reduced 5-bus
network are: r̃1 = 0.14, r̃2 = 3.91, r̃3 = 2.89, r̃4 = 9.4,
r̃5 = 0.36, r̃6 = 1.27, r̃7 = 2.84, r̃8 = 2.84, r̃9 = 4.51, and
r̃10 = 2.04. The corresponding per-unit line inductances are
computed by multiplying the resistance values by τtω0.

2) The IEEE 118-bus network: The rated three-phase power
of the network is sb,0 = 500 MVA, and the time constant
associated with the transmission-line dynamics is τt = 2.04×
10−3 s rad−1. The per-unit line inductances are obtained from
the line parameter data presented in [38] for the IEEE-118 bus
network, and the corresponding line resistances are computed
by dividing the inductances by τtω0.

The per-unit line conductances of the Kron-reduced 25-bus
network are computed by generating an incidence matrix M̃
using Fig. 5b, and solving for R̃−1 (the diagonal elements
of the matrix correspond to the per-unit line conductances).
The corresponding per-unit line inductances are computed by
dividing τtω0 by the line conductance.

C. Representing the Full-order Model in Standard Form

The grid-forming inverter network dynamics introduced in
Sections II and III can be expressed in standard form for
singular perturbation by:

(i) substituting (27b) into (27a) to give:

v′I =
(
i′I
( 1

τt
I− Λ−1

g

)
+ e′I(RgΛg)

−1
)( 1

τt
M̃R̃−1M̃⊤

+Σ(RgΛg)
−1
)−1

, (32)

(ii) substituting (5b) into (5a), (5c), (5d), and (4) to give

1

ω0

dϕ′′

dt
= (ρ− 1)ka

(
kPv(e1E

◦ − T(δ)e′) + kIvϕ
′′

+T(δ)i′g −
ω◦

ω0
cT(δ + π

2 )e
′)+ e1E

◦ − T(δ)e′,

(33a)
1

ω0

dγ′′

dt
= ρ
(
kPv(e1E

◦ − T(δ)e′) + kIvϕ
′′ +T(δ)i′g

− ω◦

ω0
cT(δ + π

2 )e
′)− T(δ)i′i, (33b)

u′r = ρkPi

(
kPv(T(−δ)e1E◦ − e′)− ω◦

ω0
T(π2 )ce

′

+ kIvT(−δ)ϕ′′ + i′g
)
+ e′ + kIiT(−δ)γ′′

−
(
kPiI+

ω◦

ω0
T(π2 )li

)
i′i, (33c)

ρ =− ε ln

(
exp

(
− 1

ε

)
+ exp

(
− imax

÷ ε
∥∥kPv(e1E

◦ − T(δ)e′) + kIvϕ
′′
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singular perturbation
Kron reduction

(a) The IEEE 118-bus system (b) The reduced 25-bus system

order dVOC−full order VSM−fullorder droop−full order dVOC−reduced order VSM−reducedorder droop−reduced

Fig. 5: The test system and its equivalent Kron-reduced network model. The test system comprises 118 buses and 186 lines,
and the Kron-reduced model comprises 25 buses, and 151 lines.
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Fig. 6: Numerical simulation results of the IEEE 118-bus network and the 25-bus Kron-reduced network visualizing the active
power exchange, reactive power exchange, current magnitude, and voltage magnitude at every boundary bus. Measurements
of the full-order IEEE 118-bus network are displayed as red-colored lines, measurements of the Kron-reduced network as
black-colored lines. Active power set-points, i.e., p⋆, are depicted as blue-colored lines.

+T(δ)i′g −
ω◦

ω0
cT(δ + π

2 )e
′∥∥

2

))
, (33d)

(iii) substituting (33c) into (6a) to give

li
ω0ri

di′i
dt

=
(ω0 − ω◦

ω0

li
ri
T(π2 )−

ri + kPi

ri
I

)
i′i

+ ρ
kPi

ri

(
kPv(T(−δ)e1E◦ − e′)− ω◦

ω0
T(π2 )ce

′

+ kIvT(−δ)ϕ′′ + i′g
)
+
kIi
ri

T(−δ)γ′′. (33e)

(iv) at each bus, an aggregate model is used to represent
the dynamics of parallel-connected GFM inverters of the
same type

(v) substituting expressions for ρk and v′k, obtained from
(4) and (32), respectively, into the full-order model and
utilizing Assumption 3 to express the resulting system of
equations as a function of a small parameter ϵ. The ag-
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gregate full-order model for a group of nk ≥ 1 parallel-
connected GFM inverters of the same type, connected to
bus k ∈ I of an electrical network is given by:6

dδk
dt

= ω◦
k − ω0, (34a)

dω◦
k

dt
=

1

ff,k(E◦
k)

1

τf,k
e
⊤
1 T(ψk − π

2 )

[
p⋆k − pm,k

q⋆k − qm,k

]
+

1

τf,k
(ω0 − ω◦

k) + ω0
κd,k
τf,k

(
kIθ,kηk

+ kPθ,ke
⊤
2 T(αk + δk)v

′
k

)
, (34b)

dE◦
k

dt
=

1

fv,k(E◦
k)

1

τv,k
e
⊤
2 T(ψk − π

2 )

[
p⋆k − pm,k

q⋆k − qm,k

]
+

1

τv,k
fe,k(E

⋆
k , E

◦
k), (34c)

di′g,k
dt

=
(
ω0T(

π
2 )−

ω0rg,k
lg,k

I

)
i′g,k +

ω0

lg,k
(e′k − v′k),

(34d)
1

ω0

dηk
dt

= e
⊤
2 T(αk + δk)v

′
k, (34e)

1

ω0

dαk

dt
= kPθ,ke

⊤
2 T(αk + δk)v

′
k + kIθ,kηk, (34f)

1

ω0

dϕ′′k
dt

= (ρk − 1)ka,k

(
kPv,k(e1E

◦
k − T(δk)e

′
k)

−
(
1 + ϵλ8

)
ckT(δk + π

2 )e
′
k + kIv,kϕ

′′
k

+T(δk)i
′
g,k

)
+ e1E

◦
k − T(δk)e

′
k, (34g)

1

ω0

dγ′′k
dt

= ρk
(
kPv,k(e1E

◦
k − T(δk)e

′
k) + kIv,kϕ

′′
k

−
(
1 + ϵλ8

)
ckT(δk + π

2 )e
′
k

)
+T(δk)

(
i′g,k − i′i,k

)
, (34h)

ρk = −ε ln
(
exp

(
− 1

ε

)
+ exp

(
− imax

÷ ε
∥∥kPv,k(e1E

◦
k − T(δ)e′k) + kIv,kϕ

′′

− ω◦
k

ω0
ckT(δk + π

2 )e
′
k +T(δk)i

′
g,k

∥∥
2

))
, (34i)

ϵλ6
di′i,k
dt

=
(
ϵλ8

li,k
ri,k

T(π2 )−
ri,k + kPi,k

ri,k
I

)
i′i,k

+
kIi,k
ri,k

T(−δk)γ′′k + ρk
kPi,k

ri,k

(
i′g,k −

(
1

+ ϵλ8
)
T(π2 )cke

′
k + kIv,kT(−δk)ϕ′′k

+ kPv,k(T(−δk)e1E◦
k − e′k)

)
, (34j)

ϵλ4
de′k
dt

= ckT(
π
2 )e

′
k + i′i,k − i′g,k, (34k)

ϵλ1
dpm,k

dt
= −pm,k + e′k

⊤
i′g,k, (34l)

ϵλ2
dqm,k

dt
= −qm,k + e′k

⊤
T(−π

2 )i
′
g,k, (34m)

6Due to page constraints, we avoid explicitly presenting the expressions
that result when ρk and v′k are eliminated from the full-order model. Instead,
we include (4) and (32) as part of the full-order model.

and the bus voltages v′k, ∀k ∈ I, are described by the
relation

v′I =
(
i′I
( 1

τt
I− Λ−1

g

)
+ e′I(RgΛg)

−1
)( 1

τt
M̃R̃−1M̃⊤

+Σ(RgΛg)
−1
)−1

. (34n)

D. Model-order Reduction via Singular Perturbation

Upon setting ϵ = 0 in (34), the differential equations
associated with fast-varying state variables are transformed to
algebraic expressions. These can then be used to eliminate
all fast-varying states from the resulting system of equations,
thereby reducing the model-order.

1) Solving for e′k, pm,k, and qm,k: Setting ϵ = 0 in (34k)–
(34m), and solving for e′k, pm,k, and qm,k, we have that

e′k =
1

ck
T(π2 )

(
i′i,k − i′g,k

)
. (35a)

pm,k = e′k
⊤
i′g,k, (35b)

qm,k = e′k
⊤
T(−π

2 )i
′
g,k. (35c)

2) Solving for γ′′k : Setting ϵ = 0 in (34j) and solving for
i′i,k, we have that

i′i,k = ρk
kPi,k

ri,k + kPi,k

(
kPv,k(T(−δk)e1E◦

k − e′k)

+ i′g,k − T(π2 )cke
′
k + kIv,kT(−δk)ϕ′′k

)
+

kIi,k
ri,k + kPi,k

T(−δk)γ′′k . (36a)

Substituting (36a) into (34h), and setting ϵ = 0, we have

ri,k + kPi,k

ω0kIi,k

dγ′′k
dt

= −γ′′k +
ρkri,k
kIi,k

(
kPv,k(e1E

◦
k − T(δk)e

′
k)

+ kIv,kϕ
′′
k − ckT(δk + π

2 )e
′
k +T(δk)i

′
g,k

)
.
(36b)

From Assumption 3, ri,k+kPi,k

ω0kIi,k
= λ7ϵ. Substituting this into

(36b), and setting ϵ = 0, we have

γ′′k =
ri,k
kIi,k

ρk
(
kPv,k(e1E

◦
k − T(δk)e

′
k) + kIv,kϕ

′′
k

− ckT(δk + π
2 )e

′
k +T(δk)i

′
g,k

)
. (36c)

3) Solving for ϕ′′k and i′i,k: Substituting (36c) into (36a)
gives the expressions

i′i,k = ρk

(
kPv,k(T(−δk)e1E◦

k − e′k) + i′g,k

− T(π2 )cke
′
k + kIv,kT(−δk)ϕ′′k

)
, (37a)

from where it follows that

e1E
◦
k − T(δk)e

′
k =

1

ρkkPv,k
T(δk)i

′
i,k − 1

kPv,k
T(δk)i

′
g,k

+T(δk + π
2 )

ck
kPv,k

e′k − kIv,k
kPv,k

ϕ′′k . (37b)

Substituting (37b) into (34g) and setting ϵ = 0 results in the
expression

kPv,k

ω0

dϕ′′k
dt

=
ρk − 1

ρk
ka,kkPv,kT(δk)i

′
i,k +

1

ρk
T(δk)i

′
i,k
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− T(δk)i
′
g,k +T(δk + π

2 )cke
′
k − kIv,kϕ

′′
k . (37c)

Substituting (35a) into (37c), while leveraging the fact that
T(δk + π

2 )T(
π
2 ) = −T(δk), gives

kPv,k

ω0kIv,k

dϕ′′k
dt

= −ϕ′′k +
ρk − 1

ρk

ka,kkPv,k − 1

kIv,k
T(δk)i

′
i,k.

(37d)

From Assumption 3, kPv,k

ω0kIv,k
= λ7ϵ. Substituting this into

(37d), and setting ϵ = 0, we have

ϕ′′k =
ρk − 1

ρk

ka,kkPv,k − 1

kIv,k
T(δk)i

′
i,k. (37e)

Substituting (35a) and (37e) into (37a) and solving for i′i,k,
we have that

i′i,k = ρk(A1,k(ρ)i
′
g,k +A1,k(ρ)e1E

◦
k), (37f)

with matrices A1,k(ρ) and A2,k(ρ) defined in (29).
4) Solving for ηk and αk: Let ω̃k denote the bus voltage

frequency at bus k. Then, (34f) can be rewritten as

1

ω0kPθ,k

dαk

dt
= e

⊤
2 T(αk + δk)v

′
k +

kIθ,k
kPθ,k

ηk. (38a)

From Assumption 3, 1
ω0kPθ,k

= λ5ϵ. Substituting this into
(38a), and setting ϵ = 0, we have

e
⊤
2 T(αk + δk)v

′
k = − kIθ,k

kPθ,k
ηk. (38b)

Substituting (38b) into (34e) gives

kPθ,k

ω0kIθ,k

dηk
dt

= −ηk. (38c)

Using steady-state initial conditions for the reduced-order
model, (38b) and (38c) result in

ηk = 0, αk = arctan

(
e⊤2 v

′
k

e⊤1 v
′
k

)
− δk. (38d)

E. Reduced-order Model

Combining results in Appendices C and D gives the follow-
ing reduced-order model

dδk
dt

= ω◦
k − ω0, (39a)

dω◦
k

dt
=

1

ff,k(E◦
k)

1

τf,k
e
⊤
1 T(ψk − π

2 )

[
p⋆k − pm,k

q⋆k − qm,k

]
+

1

τf,k
(ω0 − ω◦

k), (39b)

dE◦
k

dt
=

1

fv,k(E◦
k)

1

τv,k
e
⊤
2 T(ψk − π

2 )

[
p⋆k − pm,k

q⋆k − qm,k

]
+

1

τv,k
fe,k(E

⋆
k , E

◦
k), (39c)

di′g,k
dt

=
(
ω0T(

π
2 )−

ω0rg,k
lg,k

I

)
i′g,k +

ω0

lg,k
(e′k − v′k), (39d)

0 = ρk + ε ln

(
exp

(
− 1

ε

)

+ exp

(
−
imax

√
c2kk

2
a,k(ρk − 1)2 + ρk2

ε∥cke2E◦
k +T(δk)i′g,k∥2

) , (39e)

v′I =
(
i′I
( 1

τt
I− Λ−1

g

)
+ e′I(RgΛg)

−1
)( 1

τt
M̃R̃−1M̃⊤

+Σ(RgΛg)
−1
)−1

. (39f)

The evolution of the fast varying state variables can be
described by the following algebraic expressions

pm,k = e′k
⊤
i′g,k, (40a)

qm,k = e′k
⊤
T(−π

2 )i
′
g,k, (40b)

ηk = 0, (40c)

αk = arctan

(
e⊤2 v

′
k

e⊤1 v
′
k

)
− δk, (40d)

i′i,k = ρk(A1,k(ρ)i
′
g,k +A1,k(ρ)e1E

◦
k), (40e)

e′k =
1

ck
T(π2 )

(
i′i,k − i′g,k

)
, (40f)

ϕ′′k =
ρk − 1

ρk

ka,kkPv,k − 1

kIv,k
T(δk)i

′
i,k, (40g)

γ′′k =
ri,k
kIi,k

T(δk)i
′
i,k. (40h)
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